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Abstract

Graph sparsification has been an important topic with many structural and algorithmic
consequences. Recently hypergraph sparsification has come to the fore and has seen exciting
progress. In this paper we take a fresh perspective and show that they can be both be derived
as corollaries of a general theorem on sparsifying matroids and monotone submodular functions.

Quotients of matroids and monotone submodular functions generalize k-cuts in graphs and
hypergraphs. We show that a weighted ground set of a monotone submodular function f can be
sparsified while approximately preserving the weight of every quotient of f with high probability
in randomized polynomial time.

This theorem conceptually unifies cut sparsifiers for undirected graphs [BK15] with other
interesting applications. One basic application is to reduce the number of elements in a matroid
while preserving the weight of every quotient of the matroid. For hypergraphs, the theorem gives
an alternative approach to the hypergraph cut sparsifiers obtained recently in [CKN20], that
also preserves all k-cuts. Another application is to reduce the number of points in a set system
while preserving the weight of the union of every collection of sets. We also present algorithms
that sparsify hypergraphs and set systems in nearly linear time, and sparsify matroids in nearly
linear time and queries in the rank oracle model.
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1 Introduction

Graph sparsification has been an important topic with many structural and algorithmic consequences.
Recently hypergraph sparsification has come to the fore and has seen exciting progress. In this
paper we take a fresh perspective and show that they can be both be derived as corollaries of a
general theorem on sparsifying matroids and monotone submodular functions.

To formalize these ideas we require some preliminary definitions. A matroid is a set system
M = (N , I) where N is a ground set of elements, and I ⊆ 2N is the family of independent sets
satisfying the following properties:

(a) ∅ ∈ I.
(b) If J ∈ I, and I ⊆ J , then I ∈ I.
(c) If I, J ∈ I, and |I| < |J |, then there exists an element e ∈ J \ I such that I + e ∈ I.

The rank of a set S is the maximum cardinality of any independent subset of S, and denoted
rank(S). The rank of M is defined as the maximum cardinality of any independent set. The span
of a set S, denoted span(S), is the set of elements e such that rank(S + e) = rank(S) (including
those in S). A set S is closed if S = span(S).

An illustrative example of a matroid is the graphic matroid. Given an undirected graph
G = (V,E), the graphic matroid is the matroid with ground set N = E, and independent sets
consisting of all edge sets F ⊆ E that form a forest in G (or equivalently, that contain no cycles). For
F ⊆ E, span(F ) is the set of all edges {u, v} where u and v are in the same connected component
in the graph induced by G. If G is connected and has n vertices, the rank of the graphic matroid is
n− 1.

Our work is centered on the notion of quotients of matroids and submodular functions. We
first illustrate the notion for the graphic matroid. Consider a set of edges F ⊆ E, which induces
n−rank(F ) connected components in G. The edges spanned by F are the edges with both endpoints
in the same connected component of F . The remaining edges, E \ span(F ), are the edges cut by
the connected components of F .

E \ span(F ) is an example of a quotient in the graphic matroid. In general, for a matroid M, a
quotient is any set that is the complement of a closed set. Equivalently, Q ⊆ N is a quotient iff
Q = N \ span(S) for some set S. In the graphic matroid, the quotients are exactly the sets of edges
cut by partitions (U1, . . . , Uk) of V (for arbitrary k), i.e., the k-cuts of G. This includes, but is not
limited to, the edge cuts of G in the standard sense where k = 2.

This work extends beyond matroid quotients to quotients of monotone submodular function. To
introduce the latter, let f : 2N → R be a real-valued set function over N . f is monotone if f(S) is
nondecreasing in S; i.e., f(S) ≤ f(T ) for S ⊆ T . f is submodular if

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T )

for all S, T ⊆ N . Equivalently, f is submodular if it expresses decreasing marginal values. This
means that f(S |T ) def= f(S ∪ T ) − f(T ) is nonincreasing in T , for all S, T ⊆ N .

One example of a monotone submodular function is the rank function. Another is the coverage
function with nonnegative weights. Here we have a family of n sets S1, . . . , Sn ⊆ U and a weight
function w : U → R≥0. We define a set function f over [n] by f(I) = w(⋃i∈I Si) for I ⊆ [n]; i.e.,
the weight of all the elements covered by some set indexed by I.

The matroid terminology above extends to set functions f : 2N → R as follows. For a set S ⊆ N ,
the span of S (with respect to f) is defined as the set of elements with marginal value 0 with respect
to S:

span(S) def= {e : f(e |S) = 0}.
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If f is monotone and submodular, then span(S) is monotonically increasing. A set S is closed
if S = span(S). A quotient of f is defined as any set that is the complement of a closed set.
Equivalently, a set Q ⊆ N is a quotient iff Q = N \ span(S) for some set S. This generalizes
quotients in matroids by taking f to be the rank function. We call f(N ) the rank of f .

Cut-preserving sparsification of graphs has been an important topic of study with many appli-
cations. The random sampling work of Karger culminated in the influential work of Benczúr and
Karger [BK15]. They proved the following. Given any fixed ϵ ∈ (0, 1), an undirected graph can be
randomly sparsified to O(n log(n)/ϵ2) reweighted edges while approximately preserving the weight
of every (2-)cut up to a (1 + ϵ)-factor with high probability. Since every k-cut can be expressed as
the sum of the 2-cuts of each component (divided by 2), this also preserves the weight of every k-cut
of G. In the language of matroid theory, then, [BK15] takes as input a weighted graphic matroid of
rank r, and produces a randomly reweighted subset of O

(
r log(r)/ϵ2

)
elements that preserves the

weight of every quotient of the graphic matroid up to a (1 + ϵ)-factor.
We show a more general result for the quotients of a monotone submodular function f . Henceforth,

let f be a monotone submodular function and w a set of nonnegative weights over a ground set N
of n elements. We assume f is normalized so that f(∅) = 0 and all nonzero marginal values are
at least 1. (The latter holds automatically for integral f .) The rank function of a matroid is one
example of a function f satisfying these properties. Let ϵ ∈ (0, 1) be a fixed input parameter. Let
r

def= f(N ) be the maximum value of f . The main theorem is as follows.

Theorem 1.1. Let f : 2N → R be a monotone submodular function with f(∅) = 0 and where all
nonzero marginal values are at least 1. Let r = f(N ). Let w : N → R≥0 be a set of nonnegative
weights. There exists a set of weights w̃ : N → R≥0 such that:

(a) The support of w̃ has size O
(
r log(nr)/ϵ2

)
.

(b) The weight of every quotient of f is preserved up to a (1 + ϵ)-factor; i.e., |w(Q) − w̃(Q)| ≤
ϵw(Q) for all quotients Q.

These weights w̃ can be computed with high probability in randomized polynomial time assuming
oracle access to f .

Theorem 1.1 was motivated by matroid sparsification as a natural generalization of graph
sparsification. For matroids, theorem 1.1 translates to the following by taking f to be the rank
function. We let Qrank denote the running time of a rank query. Õ(· · ·) hides logarithmic factors.

Theorem 1.2. For any weighted matroid with n elements and rank r, and ϵ ∈ (0, 1), there exists a
set of weights supported by O

(
r ln(n)/ϵ2

)
elements that preserves the weight of every quotient up

to a (1 + ϵ)-factor. These weights can be computed with high probability in Õ(nQrank) randomized
time assuming oracle access to the rank function.

One application of theorems 1.1 and 1.2 of recent interest is to hypergraph cuts. A hypergraph is
a generalization of a graph where the edges (called hyperedges) may have any number of endpoints.
A cut is defined as the set of edges properly crossing a set of vertices S. [CKN20] recently gave
a randomized polynomial time algorithm that, given an n-vertex hypergraph H = (V,E), with
high probability, computes a reweighted subgraph of H with O

(
n log(n)/ϵ2

)
edges that preserves

the weight of every cut up to a (1 + ϵ)-factor. Their algorithm runs in Õ
(
p+ n10/ϵ7

)
time, where

p = ∑
e∈E |e| is the total size of the hypergraph. We note that while several follow up works have

improved on [CKN20] in various dimensions (discussed further below), none of these produce a cut
sparsifier with O

(
n log(n)/ϵ2

)
edges in nearly linear time.

Meanwhile, given a hypergraph H = (V,E), one can define a matroid over the edge set E called
the hypergraphic matroid, where cuts in the hypergraph map to quotients in this matroid [Lor75].
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For algorithmic reasons we introduce a submodular function different from the rank function of
the hypergraphic matroid, which we call the hypergraphic polymatroid function. This monotone
submodular set function takes as input a set of hyperedges S and returns n minus the number
of the connected components in the subgraph induced by S. The quotients of the hypergraphic
polymatroid function consists of all k-cuts of the hypergraph (for all k). Similar to graphs, a
k-cut is defined by a partition (U1, . . . , Uk) of V , and consists of all hyperedges e properly crossing
(U1, . . . , Uk) (i.e., e is not contained in any single Ui). Thus hypergraph cuts (as first introduced
above) are 2-cuts. Unlike for (normal) graphs, a hypergraph sparsifier preserving all (2-)cuts does
not necessarily preserve all k-cuts.

Along these lines we re-derive the O
(
n log(n)/ϵ2

)
-edge hypergraph cut sparsifiers of [CKN20],

and also strengthen the sparsifiers to preserve all k-cuts. We present a new algorithm that is the
first to run in nearly linear time in the input size among those producing cut-preserving hypergraphs
with O

(
n log(n)/ϵ2

)
edges.

Theorem 1.3. For any hypergraph with n vertices, there is a reweighted sub-hypergraph with at
most O

(
n ln(n)/ϵ2

)
edges that preserves the weight of every k-cut up to a (1 + ϵ)-factor (for all k).

This sub-hypergraph can be computed with high probability in randomized Õ(p) time, where p is the
total size of the hypergraph.

Another example of a matroid is the linear matroid. Here, the ground set consists of a set of
vectors in a fixed vector space, and a set of vectors is independent iff they are linearly independent.
The Gram-Schmidt process gives a polynomial time rank function for this matroid, and the rank of
the matroid is at most the dimension of the vector space. Via the linear matroid, theorem 1.2 leads
to the following theorem for weighted collections of vectors in a fixed vector space.

Corollary 1.4. Let X be a finite set of m weighted vectors in a vector space of dimension n. There
exists a reweighted subset of O

(
n log(m)/ϵ2

)
vectors that, for every subspace S, preserves the total

weight of all vectors lying outside S up to a (1 + ϵ)-factor. This reweighted subset of vectors can be
computed with high probability in randomized polynomial time.

There are other monotone submodular functions f of interest besides matroid rank functions.
One example is coverage, where the ground set is a collection of sets over a weighted universe of
points, and f takes as input a collection of sets and evaluates the weight of their union. Previous
work by [BDFKNR12] proved the following. Given a family of n over a finite universe of weighted
points, one can randomly sample a reweighted subset of O

(
n2) points that, for every subcollection

of sets, preserves the total weight of their union up to a (1 + ϵ)-factor. Their algorithm runs in
nearly linear time. Below, the total size of a set system is the sum of cardinalities of all the sets in
the set system, and represents the input size.

Theorem 1.5. Given a family of n sets over a finite universe of m weighted points, there exists a
reweighted subset of at most O

(
n log(n)/ϵ2

)
points that, for every subcollection of sets, preserves the

total weight of their union up to a (1 + ϵ)-factor. This reweighted subset of points can be computed
with high probability in randomized O

(
N log2(m+ n)

)
time, where N is the total size of the set

system.

Another example of a monotone submodular function arises in SAT. Given a boolean formula
φ(x1, . . . , xn) in conjunction normal form (CNF), let the ground set N consist of the literals
x1, x̄1, . . . , xn, x̄n. We have a monotone submodular function f : 2N → R≥0 that returns the number
of clauses satisfied by setting a collection of literals to be true.

3



Corollary 1.6. Given a boolean formula φ(x1, . . . , xn) in CNF with n variables and m weighted
clauses, one can compute a reweighted subset of at most O

(
n log(n)/ϵ2

)
clauses that, for every

assignment of variables, preserves the total weight of the number of satisfied clauses up to a (1 + ϵ)-
factor. This reweighted subset of clauses can be computed in randomized O

(
N log2(m+ n)

)
time,

where N is the total size of the formula φ.

theorem 1.5 and corollary 1.6 are closely related and we present two different ways to obtain
then. One way is to directly apply theorem 1.1 to a dual hitting set function. A second way is via a
reduction from CNF-SAT sparsification to hypergraph sparsification described by [KK15]. Via this
reduction, the bound on the number of clauses in corollary 1.6 is implied by [KK15; CKN20]; the
remaining contribution is the running time. The reduction from [KK15] can be extended to coverage.
The direct approach based on the hitting set function yields a faster and simpler algorithm, but
the second approach via hypergraph sparsification is conceptually simpler if we take hypergraph
sparsification for granted.

Joint entropy defines a monotone submodular function over random variables of a fixed probability
space. For n random variables X1, . . . , Xn in a fixed probability space, and a subset of random
variables S, the quotient Q induced by S is the set of variables that are not determined by S.
Therefore, applying theorem 1.1 to joint entropy gives the following.

Corollary 1.7. Let X1, . . . , Xn be random variables. Let α > 0 be the minimum nonzero
marginal value of the joint entropy function over X1, . . . , Xn, and let β > 0 be the total joint
entropy of X1, . . . , Xn. Given weights over X1, . . . , Xn, there is a reweighted subset of at most
O
(
β log(nβ/α)/αϵ2

)
variables that, for every subset S of X1, . . . , Xn, preserves the total weight of

all variables that are not determined by S up to a (1 + ϵ)-factor. This reweighted subset of variables
can be computed with high probability in randomized polynomial time assuming oracle access to the
joint entropy of any subset of random variables.

These applications give just a few concrete examples of theorem 1.1. Given the generality of
submodular functions and matroids, and their important roles both in theory (e.g., [Fra11; Sch03])
and practice (e.g., [Bil22]), one hopes that further interesting applications will emerge.
High-level overview of techniques. The techniques in this work are most directly inspired by
previous work on cut sparsifiers for undirected graphs, particularly [Kar93; BK15]. We highlight the
most technically relevant aspects of these works. [Kar93] introduced the randomized contraction
algorithm for undirected minimum cut and critically observed that there is only a polynomial number
of minimum cuts and near-minimum cuts. In particular, [Kar93] implies that randomly rounding all
the edge capacities uniformly relative to the weight of the minimum cut approximately preserves the
minimum cut in the graph with high probability. However, this random sample is not necessarily
sparse. For example, any edge with capacity larger than the minimum cut is automatically retained.
The uniform sample is not sensitive to the fact that edges that are only contained in large cuts can
be randomly sampled with greater variance.

[BK15] gave a hierarchical decomposition of a weighted graph into a sequence of induced
subgraphs (called “strong components”) with the following structural property: if one randomly
rounds each edge capacity in proportion to the minimum cut of the last subgraph/strong component
containing that edge, then all cuts in the input graph are approximately preserved with high
probability. This decomposition effectively identifies which edges are contained in small cuts, and
have to be sampled conservatively, and which edges are only contained in stronger cuts, which can
tolerate the greater variance of a sparser sample. With this decomposition guiding the sampling,
[BK15] can preserve all cuts up to a (1 + ϵ)-factor with high probability with a random sample of
O
(
n log(n)/ϵ2

)
reweighted edges.
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Moreover, [BK15] showed how to approximate the strong component decomposition in nearly
linear time. Their algorithm is based on an algorithm of [NI92] that iteratively removes spanning
forests from the graph. This process reflects the cut structure of the graph; for example, if two
vertices s, t are still connected after removing (say) x forests, then the minimum (s, t)-cut is at least
x. [BK15] shows that a careful application of this fast iterative process leads to a good enough
approximation of the strong component decomposition.

As mentioned above, graph cuts are quotients of the rank function of the graphic matroid.
We would like to generalize the high-level approach of [Kar93; BK15] to quotients of matroids
and more generally of monotone submodular functions. A first step is provided by [Kar98] for
unweighted matroids. For a quotient Q = N \ S, let us define the ratio of Q as the quantity
|Q|/(rank(N ) − rank(S)). Analogous to [Kar93] for graph cuts, [Kar98] gave a randomized contrac-
tion argument to bound the number of near-minimum ratio quotients. Similar to minimum cuts, this
shows that random sampling relative to the weight of the minimum quotient ratio approximately
preserves the size of all quotients (up to scaling). This leads to some speedups for matroid packing
problems in [Kar98], but does not imply a sparse set of (reweighted) elements that preserves all
quotients of a weighted matroid.

In this work, we generalize the contraction argument further to the quotients of a monotone
submodular function, and then take the next step, analogous to [BK15], of hierarchically decomposing
the elements to produce nonuniform sampling probabilities that lead to quotient-preserving sparsifiers.
While we are guided by [Kar93; BK15] at a high-level, several components did not transfer at a
more technical level to matroids and submodular functions, and here we try to motivate and explain
the differences.

The decomposition of [BK15] classifies the edges {u, v} of an undirected graph based on the
weight of the minimum (u, v)-cut. For matroids and submodular function, the analogous approach
would classify each element e based on the weight of the minimum quotient Q containing e. We
failed to make this approach work; for starters, the sampling techniques in [Kar98] are based on the
ratio of Q, and not just the weight / cardinality of Q.

We describe our alternative approach by first describing it in undirected graphs as a concrete
example that a broader audience can relate to. We first recall the Tutte–Nash-Williams tree packing
theorem. For a k-cut C = δ(S1, . . . , Sk) with total edge weight W = w(C), let us define the “ratio”
of the k-cut as the quantity W/(k−1). One can interpret the ratio of a k-cut as the average capacity
removed per additional component generated by the k-cut. The Tutte–Nash-Williams theorem
states that the maximum number of fractional spanning trees that can be packed in a graph is equal
to the minimum ratio over all k-cuts in the graph (over all k). This quantity is called the network
strength of the graph.

To be clear, the notion of “strength” in [BK15], which is based on edge connectivity, is different
from network strength. That said, it happens that the network strength is always within a factor
of 2 of the minimum cut in the graph. (This connection is exploited, for example, in the nearly
linear time minimum cut algorithm of [Kar00].) One can now try to (liberally) reinterpret [Kar93;
BK15] in terms of the Tutte–Nash-Williams theorem [Tut61; Nas61]. [Kar93] implies that randomly
rounding edge weights in proportion to the network strength preserves the ratio (hence the weight)
of every k-cut. The decomposition in [BK15] can be interpreted as loosely approximating a different
decomposition based on recursively removing the minimum ratio k-cut. The iterative process of
removing spanning trees can be interpreted as a greedy tree packing algorithm that, in the dual, is
also a greedy (inexact) algorithm for the minimum ratio k-cut.

For us, the advantage of the Tutte–Nash-Williams perspective is that it classically extends to
matroids. Let us extend the notion of quotient ratios to weighted matroids in the natural way
by replacing the cardinality of the quotient in the numerator with the weight of the quotient.
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Edmonds [Edm65] showed that the maximum quantity of fractional bases that can be packed
in a weighted/capacitated matroid is equal to the minimum quotient-ratio over all quotients Q.
We call this quantity the strength of the matroid. We can now try to generalize the Tutte–Nash-
Williams interpretation of the [BK15] algorithm to matroids as follows. First, decompose the ground
set by repeatedly computing and removing minimum ratio quotients. This gives a hierarchical
decomposition of the elements of the matroid. Then, randomly round each element based on the
ratio of the quotient that removed the element from the matroid. One can now prove that randomly
rounding based on this decomposition preserves all quotients of the matroid. This approach and
analysis for matroids generalizes (with technical care) to quotients of monotone submodular functions.
(The generalization from matroids to monotone submodular functions is perhaps not surprising
given, for example, the classical theory of polymatroids).

The decomposition based on minimum ratio quotients can be computed in polynomial time via
submodular minimization. However, we are also interested in fast running times akin to [BK15]
for matroids and concrete special cases such as hypergraphs. The analog to [BK15]’s use of [NI92]
would be to iteratively remove bases from the matroid. Unfortunately, it seems that the [BK15]
argument leverages graph structure in a non-generalizable way, as we could not make this algorithm
work for matroids. Instead, we develop new algorithms that simultaneously compute approximately
maximum base packings and (in the dual) approximately minimum ratio quotients. These algorithms
are based on the push-relabel framework proposed in [FM12] and further developed more recently in
[Qua23]. Let us call this the “matroid push-relabel” framework to distinguish it from push-relabel
for flow. Similar to push-relabel for flow, matroid push-relabel assigns labels to the elements, and
uses these labels to guide exchanges that gradually transform an arbitrary collection of bases into
a feasible packing (respecting the capacities). Similar to the labels inducing a min cut in flow,
the labels in the matroid push-relabel algorithm induce quotients that produce dual certificates
of optimality. As observed in [Qua23], this framework is also conducive to fast approximation
algorithms.

Fast approximations for base packing and minimum ratio quotients are insufficient for a nearly
linear time hierarchical decomposition of the entire matroid. In the worst case, each minimum ratio
quotient only reduces the rank by 1, and overall we make r passes over the input where r is the
rank of the matroid. To remove this factor of r, we leverage a feature of the matroid push-relabel
framework analogous to the use of max-flow push-relabel for parametric flow (e.g., [GGT89]). We
first describe the context. At a generic point in the decomposition process, we have fixed parameters
k ∈ N and ϵ ∈ (0, 1), and we want to either pack (1 − ϵ)k bases or find a quotient with ratio at most
(1 + ϵ)k. The decomposition algorithm repeatedly extracts such quotients until it certifies that the
matroid strength is at least (1 − ϵ)k by computing such a packing; then it increases k by a constant
factor.

Naively, one reruns the static algorithm from scratch for each quotient. With the push-relabel
framework one can instead do the following. For a fixed value of k, after running the push-relabel
algorithm once to extract a quotient with ratio at most (1 + ϵ)k, one can retain the labels and
collection of bases for the remaining elements of the matroid, and continue the matroid push-
relabel algorithm from this configuration. Continuing in this fashion, we can repeatedly extract
approximately minimum ratio quotients until arriving at an approximate base packing, allowing us
to increase k, all in the running time of a single instance of push-relabel. Conceptually, this removes
the overhead of r and brings the overall running time (or query complexity) down to nearly linear.
We note that to be able to reuse the push-relabel configurations as described above, we need the
approximately minimum ratio quotients to correspond to upper level sets of elements with respect
to the labels. This leads to an algorithm with invariants that appear “backwards” compared to
[FM12; Qua23].
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There are additional technical hurdles that had to be overcome to transfer the [BK15] approach
to matroids. For example, existing matroid push-relabel approximation algorithms only have truly
fast running times for integer weights and small values of k. To adapt this to weighted matroids, we
use uniform sparsification to discretize the weights and reduce k to a logarithmic factor of the input
size. Here we can apply uniform sparsification because the randomized rounding is only based on
the current estimate of the matroid strength k. The uniform sparsification guarantees had to be
strengthened beyond preserving quotients to ensure that the output from running the push-relabel
algorithm on the sampled weights is still useful for decomposing he matroid with respect to the
input weights.

To bring everything back to graphs, the more general algorithm for matroids gives a different
algorithm from [BK15] for sparsifying undirected graphs. Instead of decomposing the graph along
greedy tree/forest packings á la [NI92], we repeatedly compute approximately maximum tree
packings and approximately minimum ratio k-cuts via push-relabel. This gives a decomposition in
nearly linear time that is directly based on network strength instead of edge connectivity. Randomly
sampling based on this decomposition gives a cut-preserving sparsifier with the same number of edges
as [BK15]. Of course the algorithmic end result for graphs is not new, but we are also interested
in the explicit conceptual connection between [BK15] and the Tutte–Nash-Williams theorem and,
more broadly, to classical matroid theory.

Related work. Randomized graph sparsification has had a profound impact on randomized
algorithm design. Besides its direct applications to graph problems, the general idea of applying
random sampling to reduce the input size while approximately preserving key complex structures
has been adapted to many other domains. Due to space constraints we limit our literature review
to the most directly relevant developments.

Graph sparsification. The well-known randomized contraction algorithm of [Kar93] showed that
there is only a polynomial number of minimum cuts, and more generally, nO(α) α-approximate
minimum cuts for α ≥ 1. This allows one to apply random sampling to reduce the graph to
O
(
n log(n)/ϵ2

)
edges while preserving the value of the minimum cut up to a (1 + ϵ)-factor. This

more limited notion of sparsification sufficed to obtain faster algorithms for several flow and cut
problems [Kar94; Kar95; BK96; Kar99; Kar00; KL15]. In 2002, [BK15] obtained the first (1 + ϵ)-cut
sparsifiers (preserving all cuts up to a (1 + ϵ)-factor) with O

(
n log(n)/ϵ2

)
edges; their algorithm

runs in nearly linear time. [FHHP19] developed variations of the [BK15] approach that also sparsify
graphs while approximately preserving all cuts. [Kar93; BK15] are important inspirations for this
paper. Some parts of section 3 generalize ideas in [Kar93; BK15].

Cut sparsifiers have been generalized to spectral sparsifiers that more generally preserve the
Laplacian of a graph [ST04; ST11; SS11; BSS12]. [BSS12] showed that there are (1 + ϵ)-spectral
sparsifiers with O

(
n/ϵ2

)
edges; moreover they can be computed in nearly linear time [LS18].

Hypergraph sparsification. There has been a wave of recent interest in sparsification for hypergraphs
[KK15; CX18; CKN20; SY19; BST19; KKTY21a; KKTY21b; Lee22; JLS22]. [CKN20] was the first
to obtain a (1 + ϵ)-cut sparsifier with O

(
n ln(n)/ϵ2

)
edges, where n is the number of vertices in the

graph. Their algorithm was also inspired by [BK15] and runs in Õ
(
p+ n10/ϵ7

)
time, where p is

the total input size. Several of the papers above develop sparsifiers that preserve spectral-inspired
properties of hypergraphs that generalize hypergraph (2-)cuts. Very recently, [JLS22] obtained a
nearly linear time algorithm producing spectral hypergraph sparsifiers with O

(
n log(n) log(ℓ)/ϵ2

)
edges, where ℓ is the maximum number of vertices in any hyperedge. (Note the extra factor of
log(ℓ).) Independent follow up work [JLLS23] generalizes the spectral direction further to sums of
semi-norms.
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Matroid and submodular sparsification. Towards faster algorithms for packing disjoint bases in
a matroid, [Kar98] developed techniques for quotients of matroids analogous to the techniques
developed in [Kar93; Kar94] for cuts. In particular, [Kar98] obtained polynomial bounds on the
number of quotients with minimum or approximately minimum quotient-ratio (defined in section 2),
and showed how to sparsify the ground set while preserving the strength of the matroid up to a
(1 + ϵ)-factor. This lead to faster running times for packing bases. [Kar98] is also an important
inspiration for this paper. Theorem 1.2 is to [Kar98] as the results of [BK15] are to [Kar93]. Some
parts of section 3 generalize ideas from [Kar98].

An alternative approach to submodular sparsification is explored in [RY22], which sparsifies sums
of submodular functions. [RY22] shows, among other results, that (specifically) for the problem of
maximizing the union of k sets (out of m total sets), one can reduce the point set to O

(
mk/ϵ2

)
while

losing only a (1 + ϵ)-factor in the approximation guarantee. For sums of symmetric submodular
functions over n elements, the very recent work [JLLS23] mentioned above produces sparsified sums
of O

(
n log2.5(n) log(n/ϵ)/ϵ2

)
functions.

Hypergraph k-cut. As mentioned above, our hypergraph sparsifier has the interesting property
of approximately preserving all k-cuts in addition to 2-cuts. There are several results, including
many recent developments, on minimum k-cut in hypergraphs and related problems [Law73; Xia08;
Fuk13; FPZ23; CC20; CL20; BB22]. Our k-cut preserving sparsifier can accelerate a minimum
k-cut algorithm by reducing the number of edges as a preprocessing step in exchange for a (1 + ϵ)-
approximation factor.

Organization. Section 2 contains preliminaries including notation and definitions. Section 3
proves the main result, theorem 1.1. Section 4 proves the sparsification result for matroids. Section 5
proves the sparsification result for hypergraphs, theorem 1.3. Section 6 proves the sparsification
results for set systems and for CNF-SAT, theorem 1.5 and corollary 1.6. (We do not expand on the
other results as they are immediate.) To help separate the structural aspects (i.e., the existence of
sparse quotient sparsifiers) from the algorithmic (with emphasis on fast running times), we have
placed the most involved algorithmic discussions in the appendix. Appendices A–C describe essential
subroutines for decomposing matroids, hypergraphs, and set systems, respectively. In sections 4–6,
we only describe the sparsification algorithms for polynomially bounded weights. Appendix D
explains how to reduce from general weights to polynomially bounded weights in a black box manner.

Acknowledgements. We thank Chandra Chekuri for his feedback and encouragement. We thank
Yuichi Yoshida for highlighting that the hypergraph sparsifier preserves all k-cuts (and not just
2-cuts), and pointing out the reduction from coverage sparsification to hypergraph sparsification.
We thank the reviewers for their valuable feedback.

2 Preliminaries

Henceforth, f : 2N → R≥0 denotes a fixed set function satisfying the assumptions of theorem 1.1.
w ∈ RN

≥0 is always a fixed set of nonnegative weights over N . We always have r = f(N ).

Notation. For an element e ∈ N , we let e also denote the singleton set {e}. We write S + e and
S − e to abbreviate S ∪ {e} and S \ {e}, respectively. S̄ denotes the complement of the set S. For
a probabilistic event E, Ē denotes the complementary event. For a vector x : N → R, and a set
S, we write x(S) to denote the sum ∑

e∈S x(e). Õ(· · ·) hides logarithmic factors. A nearly linear
running time refers to a running time of the form Õ(N) = O

(
N logO(1)N

)
where N is the input

size of the problem.
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Definitions. The following quantities play a central role in the analysis. For a set S, the
strength-ratio of S, denoted φ(S), is the value

φ(S) def= w(N ) − w(S)
f(N ) − f(S) ,

with the convention that 0/0 = +∞. For a quotient Q = S̄, the quotient-ratio of Q, denoted ψ(Q),
is the value

ψ(Q) def= w(Q)
f(N ) − f(S) = w(N ) − w(S)

f(N ) − f(S) = φ(S).

The strength of f , denoted κf , is defined as the minimum strength-ratio over all sets S:

κf
def= min

S⊆N
φ(S).

Since φ(S) ≥ φ(span(S)) = ψ(N \ span(S)) for all S, κf is also the minimum ψ(Q) over all quotients
Q of f . The strength of a matroid is defined as the strength with respect to its rank function.

For a set S ⊆ N , the restriction of f to S is another set function satisfying all the properties
assumed of f . We refer to “quotients in S”, the “span in S”, and so forth, as the corresponding
objects for the restriction of f to S. For a subset T of S, we let

φ(T |S) def= w(S) − w(T )
f(S) − f(T )

denote the strength-ratio of T in S. For a quotient Q in S, we let

ψ(Q |S) def= w(Q)
f(S) − f(S \Q)

denote the quotient-ratio of Q as a quotient in S. The strength of S is the strength of the restriction
of f to S, and denoted κS .

For a set S ⊆ N , the contraction of S is the function fS defined by

fS(T ) def= f(T |S) = f(S ∪ T ) − f(S).

If f is monotone, submodular, normalized, and has marginal values at least 1, then so does
fS . We let spanS denote the span function with respect to fS . For a matroid M over N , and
S ⊆ N , the matroid contracting S, denoted M/S, is the matroid over N \ S with rank function
rankS(T ) = rank(T |S) for T ⊆ N \ S.

For additional background on submodular functions and matroids, see [Sch03; Fra11].
Restricting quotients. The following lemma shows that restricting the ground set preserves
quotients.

Lemma 2.1. Let Q be a quotient, and let S ⊆ N be a set. Then Q ∩ S is a quotient in S.

Proof. Let A = S \ (Q ∩ S) = S ∩ Q̄; we need to show that A is closed in S. We have

span(A)
(a)
⊆ span(Q̄) (b)= Q̄

where (a) is by monotonicity of span(· · ·) and (b) is because Q̄ is closed. Therefore

span(A) ∩ S ⊆ Q̄ ∩ S = A,

as desired.
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Elements with weight 0. We generally allow the input to contain elements with weight 0. When
it comes to preserving the weight of quotients, these elements of course do not contribute any weight,
and the sampling algorithms described later never assign positive weight to any such element. That
said, we cannot necessarily dismiss these zero weight elements as they still play a role in defining
the family of all quotients that have to be preserved. The following lemma addresses this latter
concern and shows that one can drop all weight 0 elements as a preprocessing step to sparsification.

Lemma 2.2. Let ϵ > 0 and let w : N → R≥0. Let N1 ⊆ N be the support of w. Let w̃1 : N1 → R≥0
preserve the w-weight of every quotient in N1 up to a (1 + ϵ)-factor. Let w̃ extend w̃1 to N be
setting w̃(e) = w(e) = 0 for all e ∈ N \ N1. Then w̃ preserves the w-weight of all quotients up to a
(1 + ϵ)-factor.

Proof. Let Q be a quotient of f . By lemma 2.1, Q∩N1 is a quotient in N1, so w̃1(Q ∩ NB) is within
a (1 + ϵ)-factor of w(Q ∩ NB). We also have w̃(Q) = w̃1(Q ∩ NB) and w(Q) = w(Q ∩ NB), hence
w̃(Q) is within a (1 + ϵ)-factor of w(Q).

3 Quotient sparsification for submodular f : proof of theorem 1.1

Given f and w, the goal is to compute a set of nonnegative weights w′ ∈ N R
≥0 with O

(
n ln(nr)/ϵ2

)
nonzero entries and that preserves the weight of every quotient of f up to a (1 + ϵ)-factor. To
describe the algorithm we need to introduce the following.

Strength decompositions. For α ≥ 1, an α-approximate strength decomposition is a descending
sequence of sets S0 ⊇ S1 ⊇ · · · ⊇ Sk such that:

(a) S0 = N .
(b) Sk = ∅.
(c) For i ∈ [k], φ(Si |Si−1) ≤ ακSi−1 .
(d) The strength ratios φ(Si |Si−1) are nondecreasing in i.

An exact strength-decomposition is a 1-approximate strength decomposition.
Given a sequence satisfying the first three properties (a)–(c), it is not difficult to obtain a

subsequence satisfying all four properties (a)–(d). Let S0 ⊇ · · · ⊇ Sk satisfy the first three properties
of a strength decomposition. We want a subsequence that satisfies the fourth property as well.
To this end, consider the following process: while there is an index i ∈ {1, . . . , k − 1} such that
φ(Si |Si−1) > φ(Si+1 |Si), remove Si from the sequence. Clearly this preserves properties (a)
and (b) and terminates with property (d) satisfied as well. We need to verify that property (c) is
preserved. The following lemma implies that when we remove a set Si−1, we have φ(Si+1 |Si−1) ≤
φ(Si |Si−1) ≤ ακSi−1 , as desired.

Lemma 3.1. Let S0, S1, . . . , Sk ⊆ N with Si ⊆ Si−1 for all i. Then

φ(Sk |S0) ≤ max
i∈[k]

φ(Si |Si−1).

Proof. We have

w(S0) − w(Sk) =
k∑

i=1
w(Si−1) − w(Si) =

k∑
i=1

φ(Si |Si−1)(f(Si−1) − f(Si))

≤ max
i
φ(Si |Si−1)(f(S0) − f(Sk))

by telescoping series, as desired.
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quotient-sparsification(f,w,ϵ)

1. Compute an α-approximate strength decomposition (S0 = N ) ⊇ S1 ⊇ · · · ⊇ (Sk = ∅) for a
parameter α = O(1).

2. For each element e:
A. Let τe = cϵ2φ(Si | Si−1)

α ln(nr) , where e ∈ Si−1 \ Si, for a sufficiently small constant c > 0.
B. Randomly (and independently) set

w̃(e) =
{

⌈w(e)/τe⌉τe with probability pe
def= w(e)/τe − ⌊w(e)/τe⌋,

⌊w(e)/τe⌋τe with probability 1 − pe.

3. Return w̃.

Figure 1: Computing a sparse set of weights that preserves the weight of all quotients of f .

The algorithm. At a high-level, the quotient sparsification algorithm computes an approximate
strength decomposition S0, S1, . . . , Sk and then non-uniformly samples the weights based on the
decomposition. An exact strength decomposition can be computed in polynomial time as computing
each Si reduces to submodular minimization [GLS81; IFF01; Sch00] via the Newton method for
fractional combinatorial optimization [Din67] (cf. [Rad09]). There are faster and more direct
algorithms for computing approximate strength decompositions in more concrete settings, some of
which are presented later.

We associate each element e with the strength-ratio φ(Si |Si−1) of the unique set Si such
that e ∈ Si−1 \ Si. The algorithm randomly rounds each w(e) non-uniformly where elements e
are prioritized by their strength-ratios. For example, in the special case of uniform weights, the
algorithm randomly samples each element e ∈ Si−1 \ Si with probability inversely proportional
to φ(Si |Si−1) and (when e is sampled) assigns weight proportional to φ(Si |Si−1). Intuitively,
smaller values of φ(Si |Si−1) implies that Si−1 has low strength and that quotients of Si−1 are more
sensitive to fluctuations in weight. This suggests that the sampling should prioritize (i.e., be more
conservative for) these elements. Larger values of φ(Si |Si−1) reflect a stronger set Si−1 that can
tolerate sparser samples and higher variance.

Pseudocode for the algorithm, called quotient-sparsification, is presented in fig. 1 above.
For the rest of this section we let w̃ denote the randomized weights returned by quotient-
sparsification. Observe that w̃ satisfies E[w̃(S)] = w(S) for all sets S. We want to show
that w̃(Q) is concentrated at w(Q) for all quotients Q.

Counting quotients. The first step of the analysis observes that there are only polynomially
many quotients with weight close to κf . Recall that r = f(N ), and we assume that all nonzero
marginal values of f are at least 1.

Lemma 3.2. For each integer t ∈ N, there are at most nt+1rt quotients of f with weight at most
tκf .

Proof.1 Let ℓ = ⌊r⌋ − t − 1. Consider the following randomized process that returns a family of
quotients of f . Initially, let R = ∅. While f(R) < ℓ, we add to R an element e ∈ N \ span(R)
randomly sampled in proportion to its weight w(e). This produces a randomized set R with f(R) ≥ ℓ.

1The special case where the elements are unweighted and f is the rank function of a matroid was proven in [Kar98].
This proof extends the ideas to weighted elements and submodular functions.

11



The random process then outputs the set of all quotients disjoint from R with total weight at most
tκf .

To bound the number of quotients that are output, consider any quotient Q = S̄ disjoint from R.
Then span(R) ⊆ span(S) = S because span(· · ·) is monotonically increasing, R ⊆ S, and S is closed.
One can repeatedly add elements from S \ span(R) to R as long as span(R) ⊊ S. Each element
increases f(R) by at least 1, and f(R) is bounded above by r, so at most t+ 1 elements are added
before f(R) = f(S), span(R) = span(S) and Q = N \ span(R). Conversely, a set S of at most t+ 1
elements induces a quotient Q = N \ span(R ∪ S) disjoint from R. This shows that there at most

t+1∑
i=0

(
n

i

)
≤ nt+1

quotients disjoint from R.
We claim that any quotient Q with weight at most tκf is output with probability at least 1/

(⌊r⌋
t

)
.

If so, then since the sum of output probabilities over all quotients Q is at most nt+1, there are at
most (

⌊r⌋
t

)
nt+1 ≤ nt+1rt

quotients of weight at most tκf , as desired.
To prove the claim, fix a quotient Q with weight at most tκf . It suffices to show that the

iteratively sampled set R is disjoint from Q with probability at least 1/
(⌊r⌋

t

)
.

Recall that the process generating R terminates as soon as f(R) ≥ ℓ, which occurs within ℓ
iterations because each additional element increase f(R) by at least 1. We reframe this as an
ℓ-iteration process in which the iterations where f(R) ≥ ℓ simply hold R constant. For i ∈ {0, . . . , ℓ},
let R(ℓ) be the value of R after i iterations.

For i ∈ [ℓ], Ei be the event that the ith iteration does not sample an element from Q (including
the scenario where there is no sample because f(R(i−1)) ≥ ℓ). Let Xi ∈ {0, 1} be the indicator
variable for Ei. Consider E[Xi |R(i−1)] = P[Ei |R(i−1)] with R(i−1) fixed. If f(R(i−1)) ≥ ℓ, then we
do not sample any element, so

E[Xi | f(R(i−1))] = 1.

If f(R(i−1)) < ℓ, then the probability of sampling from Q is bounded above by

w(Q)
w(N ) − w(span(R(i−1))) ≤ tκf

w(N ) − w(span(R(i−1)))
(a)
≤ tκf

κf (r − f(R(i−1)))

= t

r − f(R(i−1)) ≤ t

⌊r⌋ − ⌈f(R(i−1))⌉ .

Here (a) is because f has strength κf , hence φ(span(R(i−1))) ≥ κf . Thus, when f(R(i−1)) < ℓ, we
have

E[Xi | f(R(i−1))] ≥ 1 − t

⌊r⌋ − ⌈f(R(i−1))⌉ = ⌊r⌋ − t− ⌈f(R(i−1))⌉
⌊r⌋ − ⌈f(R(i−1))⌉ . (1)

We claim that for all i ∈ {1, . . . , ℓ}, and all fixed R(i−1),

E

 ℓ∏
j=i

Xj

∣∣∣∣∣∣R(i−1)

 ≥

1 if f(R(i−1)) > ℓ(⌊r⌋−⌈f(R(i−1))⌉
t

)−1 otherwise.
(2)
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If the claim holds, then we have

P[R(ℓ) ∩Q = ∅] = E
[

ℓ∏
i=1

Xi

]
≥
(

⌊r⌋
t

)−1

because R(0) = ∅, as desired.
We prove the claim by induction (on ℓ− i). The base case is where i = ℓ. If f(R(ℓ−1)) ≥ ℓ, then

E[Xℓ |R(ℓ−1)] = 1,

as desired. Otherwise, we have

E[Xi | f(R(ℓ−1))]
(b)
≥ ⌊r⌋ − ⌈f(R(ℓ−1))⌉ − t

⌊r⌋ − ⌈f(R(ℓ−1))⌉ ≥
ℓ∏

j=⌈f(R(ℓ−1))⌉

⌊r⌋ − t− j

⌊r⌋ − j
=
(

⌊r⌋ − ⌈f(R(ℓ−1))⌉
t

)−1

,

as desired, where (b) is by eq. (1).
Now suppose 1 ≤ i < ℓ. If f(R(i−1)) ≥ ℓ then we have

E[Xi |R(i−1)] = 1,

as desired. Otherwise, f(R(i−1)) < ℓ. By induction (on ℓ− i), we have

E

 ℓ∏
j=i

Xj

∣∣∣∣∣∣R(i−1)

 = E

Xi E

 ℓ∏
j=i+1

Xj

∣∣∣∣∣∣R(i)

 ∣∣∣∣∣∣R(i−1)

 ≥ E[XiY |R(i−1)],

where

Y
def=

1 if f(R(i)) > ℓ,(⌊r⌋−⌈f(R(i))⌉
t

)−1 otherwise.

Since ⌈f(R(i))⌉ ≥ ⌈f(R(i−1)) + 1⌉ = ⌈f(R(i−1))⌉ + 1, we have

E[XiY |R(i−1)] ≥ E[XiZ |R(i−1)] = E[Xi |R(i−1)]Z

where

Z
def=

1 if f(R(i−1)) > ℓ− 1,(⌊r⌋−(⌈f(R(i−1))⌉+1)
t

)−1 otherwise.

Finally, by eq. (1), we have

E[Xi |R(i−1)]Z ≥
(⌊r⌋ − t− ⌈f(R(i−1))⌉

⌊r⌋ − ⌈f(R(i−1))⌉

)
Z ≥

(
⌊r⌋ − ⌈R(i−1)⌉

t

)−1

.

This establishes eq. (2) for all i ∈ [ℓ] and all R(i−1) and completes the proof.
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Uniform sampling. Let τ0
def= c0ϵ

2κf/ log n where c0 > 0 is a sufficiently small constant. We first
consider a special case of the quotient sparsification algorithm where τe ≤ τ0 for all e. This would
be the case if k = 1. In this setting, lemma 3.2 allows us to prove that all quotients are preserved
(in the uniform setting) via a straightforward union bound.

Lemma 3.3. If τe ≤ τ0 for all e ∈ N , then with high probability, we have

|w̃(Q) − w(Q)| ≤ ϵw(Q) (3)

for all quotients Q.

Proof.2 Call a quotient Q bad if w̃(Q) fails (3).
For t ∈ N, let Qt be the family of quotients of f with total weight between [(t− 1)κ, tκ). Fix

t ∈ N. By lemma 3.2, we have |Qt| ≤ (nr)t+1. For each quotient Q ∈ Qt, by the multiplicative
Chernoff bound (scaled by τ0),

P[Q is bad] ≤ 2e−ϵ2w(Q)/3τ0 ≤ 2e−c1t ln(nr) = 2(nr)−c1t

for a sufficiently large constant c1.3 Taking the union bound over Qt, we have

P[some quotient in Qt is bad] ≤ 2(nr)−c1t(nr)t+1 ≤ 2(nr)−c2t

for a sufficient large constant c2. Finally, taking the union bound over all t ∈ N,

P[some quotient is bad] ≤
∑
t∈N

2(nr)−c2t ≤ (nr)−c3

for a sufficiently large constant c3, as desired.

Nonuniform sampling for the general case. We now consider the general case of the quotient
sparsification algorithm where k > 1. The high-level idea of the analysis is to apply lemma 3.3 to
each Si in the strength decomposition with the weights appropriately rescaled.

Lemma 3.4. With high probability, we have |w̃(Q) − w(Q)| ≤ ϵw(Q) for all quotients Q.

Proof. Let wφ, w̃φ : N → R≥0 be the weights defined by

wφ(e) = w(e)
φ(Si |Si−1) and w̃φ(e) = w̃(e)

φ(Si |Si−1) for e ∈ Si−1 \ Si.

We claim that with high probability,

|w̃φ(Q ∩ Si) − wφ(Q ∩ Si)| ≤ ϵwφ(Q ∩ Si) (4)

for all quotients Q of f and all sets Si in the strength decomposition. We prove the claim momentarily.
First we show how the claim implies that |w̃(Q) − w(Q)| ≤ ϵw(Q) for all quotients Q.

Fix a quotient Q and suppose (4) holds for all Si. For each element e ∈ Q, if e ∈ Si−1 \ Si, we
have

w(e) = φ(Si |Si−1)wφ(e) = φ(S1)wφ(e) +
i∑

j=2
(φ(Sj |Sj−1) − φ(Sj−1 |Sj−2))wφ(e)

2For the special case of matroid rank functions, [Kar98] proved the claim for the unweighted setting as well as the
weighted setting under a similar but different rounding process based on the Poisson distribution.

3By which we mean that c1 can be made arbitrarily large by making the input constant c0 arbitrarily small.
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by telescoping series. Similarly we have

w̃(e) = φ(S1)w̃φ(e) +
i∑

j=2
(φ(Sj |Sj−1) − φ(Sj−1 |Sj−2))w̃φ(e).

Consequently we have

w(Q) = φ(S1)wφ(Q) +
k∑

i=2
(φ(Si |Si−1) − φ(Si−1 |Si−2))wφ(Q ∩ Si−1),

w̃(Q) = φ(S1)w̃φ(Q) +
k∑

i=2
(φ(Si |Si−1) − φ(Si−1 |Si−2))w̃φ(Q ∩ Si−1).

Finally, by (a) the triangle inequality and (b) inequality (4), we have

|w̃(Q) − w(Q)|
(a)
≤ φ(S1)|wφ(Q) − w̃φ(Q)|

+
k∑

i=2
(φ(Si |Si−1) − φ(Si−1 |Si−2))|wφ(Q ∩ Si−1) − w̃φ(Q ∩ Si−1)|

(b)
≤ ϵφ(S1)wφ(Q) + ϵ

k∑
i=2

(φ(Si |Si−1) − φ(Si−1 |Si−2))wφ(Q ∩ Si−1)

= ϵw(Q),

as desired.
It remains to prove the claim. It suffices to prove that (4) holds for fixed Si and all Q with high

probability. The claim then follows from the union bound over all (up to n) choices of Si.
Fix Si. We claim that Si has strength between 1/α and 1 with respect to the rescaled weights

wφ. First, we have

wφ(Si) − wφ(Si+1)
f(Si) − f(Si+1) = φ(Si+1 |Si)

φ(Si+1 |Si)
= 1

To show that Si has strength at least 1/α with respect to wφ, let T be any subset of Si. We
need to show that φ(T |Si) ≥ 1/α. We have

wφ(Si) − wφ(T ) =
k−1∑
j=i

wφ(Sj \ Sj+1) − wφ(T ∩ (Sj \ Sj+1))

=
k−1∑
j=i

w(Sj \ Sj+1) − w(T ∩ (Sj \ Sj+1))
φ(Sj+1 |Sj) . (5)

For each j ∈ {i, . . . , k − 1}, the restriction of f to Sj has strength at least φ(Sj+1 |Sj)/α. Contracting
Sj+1 does not decrease the strength. Thus

w(Sj \ Sj+1) − w(T ∩ (Sj \ Sj+1)) ≥
(
φ(Sj+1 |Sj)

α

)
(f(Sj |Sj+1) − f(T ∩ Sj |Sj+1))

for each j ∈ {i, . . . , k − 1}. Substituting into (5) gives

wφ(Si) − wφ(T ) ≥ 1
α

k−i∑
j=i

f(Sj |Sj+1) − f(T ∩ Sj |Sj+1). (6)
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For each j ∈ {i, . . . , k − 1}, we have f(T ∩ Sj |Sj+1) ≤ f(T ∩ Sj |T ∩ Sj+1) by submodularity. This
gives

wφ(Si) − wφ(T ) ≥ 1
α

k∑
j=i

f(Sj |Sj+1) − f(T ∩ Sj |T ∩ Sj+1) = 1
α

(f(Si) − f(T ))

by telescoping series. Thus φ(T |Si) ≥ 1/α, and taken over all subsets T of Si, we conclude that Si

has strength at least 1/α.
The randomized weights w̃φ are randomly rounding wφ with respect to the thresholds

τe

φ(Si |Si−1) ≤ cϵ2

α ln(nr)

for all e ∈ Si−1 \ Si. Applying lemma 3.3 to Si−1 with weights wφ and strength (at least) 1/α, with
high probability, w̃φ preserves the weight wφ(Q) of every quotient Q in Si−1 up to a (1 + ϵ)-factor.
By lemma 2.1, each intersection Q ∩ Si, where Q is a quotient of f , is a quotient in Si. Thus w̃φ

preserves the weight of every intersection Q∩ Si per the claimed inequality (4), over all quotients Q
of f , with high probability. This completes the proof.

Completing the proof of theorem 1.1. Let w̃ be the corresponding randomized set of weights
output by quotient-sparsification. By lemma 3.4, with high probability, w̃ preserves the weight
of every quotient up to a (1 + ϵ)-factor. It remains to bound the number of nonzeroes in w̃.

We claim that each element e has w̃(e) > 0 with probability at most w(e)/τe. Of course this
holds if w(e) ≥ τe. If w(e) < τe, then w̃(e) is nonzero with probability pe = w(e)/τe.

By linearity of expectation, the expected number of nonzeroes is bounded above by

∑
e

w(e)
τe

= O
(
ln(nr)/ϵ2

) k∑
i=1

w(Si) − w(Si−1)
φ(Si−1 |Si)

≤ O
(
ln(nr)/ϵ2

) k∑
i=1

f(Si) − f(Si−1) = O
(
r ln(nr)/ϵ2

)
.

By the Chernoff inequality, the actual number is at most a constant factor greater than the expected
value with high probability. This completes the proof of theorem 1.1.

4 Sparsifying matroids in the rank oracle model: proof of theorem 1.2

Let M = (N , I) be a matroid with n elements and rank r, and let w : N → R≥0 be a set of
nonnegative weights. Theorem 1.2 claims that M can be sparsified to O

(
n log(n)/ϵ2

)
elements while

preserving the weight of every quotient up to a (1 + ϵ)-factor, in nearly linear time and queries to a
rank oracle. A polynomial running time and oracle complexity already follows from theorem 1.1.

We follow the general framework from section 3 where we first compute an approximate strength
decomposition and assign sampling probabilities based on the decomposition. To compute a
decomposition we repeatedly extract sets that are both strong and have low strength-ratio relative
to the previous set in the decomposition.

Extracting strong and low strength-ratio sets with small integer weights. The following
lemma describes a subroutine for extracting one such set at a time, that is efficient for small integer
weights and strength.
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Lemma 4.1. Let w be integral. For k ∈ N and ϵ ∈ (0, 1), in O(n(k + log(n)) log(nk)Qrank/ϵ) time,
one can compute a closed set S ⊆ N such that:

(a) κ(S) ≥ k.
(b) If S ̸= N , then φ(S) ≤ (1 + ϵ)k.

The proof of lemma 4.1 is placed in appendix A as it is easier to discuss separately. We mention
in passing that the algorithm implementing lemma 4.1 tries to pack k bases to certify that κ(M) ≥ k.
The case where S ̸= N arises in the dual when such a packing is not found.

Lemma 4.1 is only useful when the weights are integral and the strength paramter k is small.
We want to extend lemma 4.1 to general weights and strength. The high-level idea is to apply
uniform sampling (lemma 3.3) to reduce the weights and strength parameter to small integers, and
then apply lemma 4.1 to the sparsified set. The issue is that the output set of elements S is only
guaranteed to have the desired strength with respect to the randomized weights generated from
the random sample, instead of the input weights w. To ensure that S has the desired strength and
strength-ratio with respect to w as well, we need to strengthen lemma 3.3.
Stronger uniform sampling. The following lemma strengthens lemma 3.3 to show that uniform
sparsification also preserves the strength of closed sets S with low strength-ratio φ(S). The setup is
the same as in lemma 3.3 except the hidden constant c1 should be smaller. The lemma is for all
normalized monotone submodular functions f .

Lemma 4.2. Let τ0
def= c1ϵ

2κf/ log(nr) for a sufficiently small constant c1. Let τ : N → R be a set
of element thresholds values such that 0 ≤ τe ≤ τ0 for all e ∈ N . Let w̃ : N → R≥0 be a randomized
set of weights such that for each element e ∈ N , we randomly and independently set

w̃(e) =
{

⌈w(e)/τe⌉τe with probability pe
def= w(e)/τe − ⌊w(e)/τe⌋,

⌊w(e)/τe⌋τe with probability 1 − pe.

For a set S, let κ̃S denote the strength of S with respect to w̃.
With high probability, w̃ satisfies all of the following:

(i) For all quotients Q, |w̃(Q) − w(Q)| ≤ ϵw̃(Q).
(ii) For all closed sets S with φ(S) ≤ 2κf , κ(S) ≥ (1 − ϵ)κ̃(S) − ϵκf .

Proof. We have already established, in lemma 3.3, that w̃ ϵ-approximates the weight of all quotients
with high probability (result (i)). We need to show that result (ii) holds with high probability. Then
both results (i) and (ii) hold simultaneously with high probability by the union bound.

For a closed set S, because S is closed, a set T ⊆ S is closed in (the restriction to) S iff it is
closed in N . (Equivalently, span(T ) ⊆ S for all T ⊆ S iff S is closed.) Call a set Q a subquotient
if it is of the form S \ T , where S ⊆ N and T ⊆ S are both closed. We identify two types of
subquotients of interest:

• Type 1: A subquotient Q = S \ T is type 1 if φ(S) ≤ 2κf and κ(S) ≥ κf .
• Type 2: A subquotient Q = S \ T is type 2 if φ(S) ≤ 2κf and φ(T ) ≤ 2κf .

We claim that with high probability, we approximately preserve the weight of both types of
subquotients in the following sense:

• For all quotients Q = S \ T of type 1, we have

|w(Q) − w̃(Q)| ≤ ϵw(Q). (7)

• For all quotients Q = S \ T of type 2, we have

|w(Q) − w̃(Q)| ≤ ϵw(Q) + ϵκf . (8)
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We defer the proof of the claim that eqs. (7) and (8) hold with high probability to the end. We first
assume they hold and show how they imply result (ii) of the lemma.

Let S be a closed set with φ(S) ≤ 2κf . We want to show that κ(S) ≥ (1 − ϵ)κ̃(S) − ϵκf . We
have two cases.
Case 1: κ(S) ≥ κf . Then all quotients of S are quotients of type 1. We have

κS = min
T ⊆S

T closed

w(S) − w(T )
f(S) − f(T )

(a)
≥ min

T ⊆S
T closed

(1 − ϵ) w̃(S) − w̃(T )
f(S) − f(T ) = (1 − ϵ)κ̃S ,

where (a) invokes (7).
Case 2: κ(S) ≤ κf . Then there is a closed subset T ⊊ S such that

φ(T |S) = w(S) − w(T )
f(S) − f(T ) ≤ κf .

Observe that

φ(T ) ≤ max{φ(S | N ), φ(T |S)} ≤ 2κf .

This makes S \ T is a subquotient of type 2.
Now we have

κ̃(S) ≤ w̃(S) − w̃(T )
f(S) − f(T )

(b)
≤ (1 + ϵ)φ(T |S) + ϵκf

f(S) − f(T )
(c)
≤ (1 + ϵ)κS + ϵκf ,

as desired. Here (b) applies (8) and (c) is because f(S) ≥ f(T ) + 1 by assumption.
This proves the lemma, assuming the claimed eqs. (7) and (8) hold with high probability. It

remains to prove these claims. We first prove that eq. (7) holds with high probability for all quotients
of type 1.

Suppose a closed set S has κS ≥ κf . Then τ0 is also small enough relative to κS that, by
lemma 3.3, w̃ ϵ-approximations the weight of quotients of S with high probability. That is, we
have eq. (7) for all subquotients of type 1 with fixed S with high probability. By lemma 3.2,
there are poly(rn) closed sets S with φ(S) ≤ 2κf . Taking the union bound over all c;psed S with
κf ≤ φ(S) ≤ 2κf , we have eq. (7) for all subquotients of type 1 with high probability.

Next we consider subquotients of type 2. For any particular subquotient Q = S \T , eq. (8) holds
with high probability by Chernoff bounds.4 Meanwhile, there are at most poly(rn) subquotients of
type 2, because by lemma 3.2, there are at most poly(rn) closed sets S (or T ) with φ(S) ≤ 2κf .
Taking the union bound, (8) holds for all subquotients of type 2 with high probability.

Strong and low strength-ratio sets with general weights. Now we extend lemma 4.1 to
general weights and strengths via uniform sampling, leveraging the stronger guarantees of lemma 4.2.

Lemma 4.3. Let λ > 0 and let ϵ > 0 be sufficiently small. Suppose M has strength at least Ω(λ).
In O

(
n log2(n)Qrank/ϵ

3
)

randomized time and with high probability, one can either:

4Here we invoke the following “mixed multiplicative-additive” form which also follows from standard proofs of the
Chernoff bound:

Let X1, . . . , Xn ∈ [0, 1] be independent random variables, ϵ ∈ (0, 1), and β > 0. Let µ =
∑n

i=1 E[Xi] be the expected
sum. Then

P[|X1 + · · · + Xn − µ| ≥ ϵ(µ + β)] ≤ 2e−ϵ2β .
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(i) Declare (correctly) that M has strength at least λ.
(ii) Compute a set S ⊆ N such that:

(a) S has strength-ratio φ(S) ≤ (1 + ϵ)λ.
(b) If S is nonempty, then S has strength κS ≥ λ.

Proof. For ease of notation, we relax the guarantee (ii).(a) to have φ(S) ≤ (1 + ϵ)4λ instead of
φ(S) ≤ (1 + ϵ)λ. The claimed upper bound of φ(S) ≤ (1 + ϵ)λ then follows from decreasing ϵ by a
constant factor as a preprocessing step.

Let τ = cϵ2λ/ log(n) for a sufficiently small constant c > 0. Let k = (1 + ϵ)3λ/τ = O
(
log(n)/ϵ2

)
.

Decreasing c by a constant factor as needed, we assume that k is an integer.
For each element e, we independently sample a random weight w̃(e) where

w̃(e) =
{

⌈w(e)/τ⌉τ with probability pe = w(e)/τ − ⌊w(e)/τ⌋,
⌊w(e)/τ⌋τ with probability 1 − pe.

All weights in w̃ are integer multiples of τ . We apply lemma 4.1 to M with the integer weights
w̃/τ and parameters k and ϵ, returning a closed set S. By lemma 4.1 (for k = O

(
log(n)/ϵ2

)
), the

running time is O
(
n log2(n)Qrank/ϵ

3
)
.

Since (M, w) has strength Ω(λ), w̃ satisfies the conditions of lemma 4.2 for error parameter ϵ.
With high probability, w̃ satisfies the properties (i) and (ii) of lemma 4.2 with error parameter ϵ.
Henceforth we assume this is the case.

If S = N , then this certifies that (M, w̃/τ) has strength at least k, hence (M, w̃) has strength
at least kτ = (1 + ϵ)3λ. Since w̃ preserves all quotients up to a (1 ± ϵ)-factor, M has strength at
least (1 − ϵ)kτ = (1 − ϵ)(1 + ϵ)3λ ≥ λ with respect to w. So in this case we declare that M has
strength at least λ.

Otherwise S ⊊ N . By lemma 4.1, S has strength at least kτ = (1 + ϵ)3λ and strength-ratio at
most (1 + ϵ)kτ = (1 + ϵ)4λ with respect to w̃. Since w̃ ϵ-approximates all quotients, and S is closed,
we have

φ(S) = w(N ) − w(S)
f(N ) − f(S) ≤ (1 + ϵ) w̃(N ) − w̃(S)

f(N ) − f(S) ≤ (1 + ϵ)5λ,

as desired. Additionally, by lemma 4.2.(ii), we have

κS ≥ (1 − ϵ)(1 + ϵ)3λ− ϵλ ≥ λ,

as desired.

Proof of theorem 1.2. We are now prepared to prove theorem 1.2. For ease of notation we
fix ϵ ∈ (0, 1) and show how to preserve the weight of all quotients up to a (1 + ϵ)3-factor. The
claimed (1 + ϵ)-factor follows from decreasing ϵ by a constant factor. We assume that the weights
are polynomially bounded. The extension to general weights is described in appendix D.

Without loss of generality we may assume that all elements have strictly positive weight
(lemma 2.2). By scaling, we may assume the minimum weight element is r, and the total weight is
W for some W = poly(n). Then M has strength at least 1, and any strength ratio φ(S |T ) that
may arise is bounded between 1 and nW .

Given the quotient-sparsification algorithm from section 3, and the guarantees of theorem 1.2,
it suffices to compute a O(1)-approximate strength decomposition of the rank function of M in the
claimed running time.
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matroid-sparsification(M = (N , I), w : N → R≥0, ϵ ∈ (0, 1))
/* We assume the total weight is W for some W = poly(n). Wlog we assume the minimum

element weight is r. */

1. Let ϵ0 > 0 be a sufficiently small constant. Let S0 = N , λ0 = 1 + ϵ0, and k = 0.
2. While Sk ̸= ∅:

A. Apply lemma 4.3 with groundset Sk, strength parameter λk, and error parameter ϵ0.
1. If this certifies that Sk has strength at least λk, then set λk = (1 + ϵ0)λk.
2. Otherwise the subroutine returns a set S. Set Sk+1 = S, λk+1 = (1 + ϵ0)λk, and

k = k + 1.
3. Let (T1 = N ), . . . , (Tℓ = ∅) be the subsequence of S1, . . . , Sk obtained by repeatedly

removing any set Si where φ(Si |Si−1) > φ(Si+1 |Si) with respect to w.
4. For each element e ∈ N :

A. Let τe = cϵ2

ln(n)φ(Ti |Ti−1), where e ∈ Ti−1 \ Ti, for a sufficiently small constant c > 0.
B. Randomly (and independently) sample

w̃(e) =
{

⌈w(e)/τe⌉τe with probability pe
def= w(e)/τe − ⌊w(e)/τe⌋,

⌊w(e)/τe⌋τe with probability 1 − pe.

5. Return w̃.

Figure 2: Sparsifying a matroid with polynomially bounded weights.

To compute the approximate strength decomposition, we apply lemma 4.3 to N with λ = 1 and
constant error parameter, and then repeatedly apply lemma 4.3 to its own output with λ increasing by
a constant factor, until we are left with an empty set. This produces a decreasing chain of closed sets
(S0 = N ) ⊋ S1 ⊋ · · · ⊋ (Sk = ∅) that, with high probability, satisfies φ(Si+1 |Si) ≤ O(1)κ(Si) for
all i. That is, S0, . . . , Sk satisfies properties (a)–(c) of a O(1)-approximation strength decomposition
with high probability. As discuss in section 3, we obtain a O(1)-approximate strength decomposition
as a subsequence by iteratively removing any Si such that κ(Si |Si−1) > κ(Si+1 |Si).

We use this subroutine to compute the O(1)-approximate strength decomposition in quotient-
sparsification. (See fig. 2 for pseudocode of the entire algorithm.) By theorem 1.1, with high
probability, this gives a randomized set of weights supported by O

(
r log(n)/ϵ2

)
elements and which

preserves the weight of every quotient up to a (1 + ϵ)-factor. As for the running time, we have
three steps to account for: (a) repeatedly invoking lemma 4.3 to compute the chain of closed sets
S0, . . . , Sk; (b) pruning the chain to a proper strength decomposition, and (c) sampling the elements.

For step (a), each time we invoke lemma 4.3 increases λ by a constant factor. λ starts at 1, and
is bounded above by nW as that is the maximum possible strength of any closed subset. Thus λ
takes on at most O(log(nW )) = O(log n) distinct values, and this bounds the number of times we
invoke lemma 4.3. Each invocation takes O

(
n log2(n)Qrank

)
time. This gives O

(
n log3(n)Qrank

)
total time spend on step (a).

To extract a proper strength decomposition in O(nQrank) time, we first compute w(Si) and
rank(Si) for all i. We then iterate through the Si’s in increasing order of i starting from i = 1.
Whenever φ(Si |Si−1) > φ(Si+1 |Si), we drop Si and, if i > 1, decrement i. Each iteration either
advances i, or else decreases i by at most 1 while also decreasing the length of the sequence by 1.
Thus, the total number of iterations is at most twice the length of the original sequence.
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The final step, (c), is easy to implement in O(n) time. This gives the claimed O
(
n log3(n)Qrank

)
running time overall.
Remark 4.1. The only point where the matroid structure is leveraged (beyond the fact that the rank
function is normalized monotone submodular) is in lemma 4.1. For general normalized monotone
submodular f , given a subroutine implementing the interface of lemma 4.1, one can follow the same
generic steps as described above and obtain a O

(
n log(nr)/ϵ2

)
-size sparsifier with running time a

logarithmic factor over the running time of the subroutine with strength parameter k = O(log(nr))
and constant error parameter ϵ = Ω(1). This is the case for hypergraphs in section 5.

5 Hypergraph sparsification: proof of theorem 1.3

Let H = (V,E) be a hypergraph with positive edge weights w : E → R>0. Let m denote the number
of edges, n the number of vertices, and p = ∑

e∈E |e| the total size of H. Let ϵ ∈ (0, 1) be fixed.
The goal is to compute, with high probability and in Õ(p) time, a reweighted sub-hypergraph with
O
(
n log(n)/ϵ2

)
edges that preserves the weight of every k-cut up to a (1 + ϵ)-factor.

For each hyperedge e ∈ E, let Ae be any set of |e| − 1 pairs of endpoints of e, interpreted as
normal edges, that form a spanning tree of the endpoints of e. We call Ae the auxiliary edges of
e. Let A def= ⋃

e∈E Ae denote the multiset of auxiliary edges, where we distinguish auxiliary edges
from different hyperedges even if they have the same endpoints. For a set of hyperedges S, we let
AS

def= ⋃
e∈S Ae denote the combined sets of auxiliary edges from S.

Let rank(· · ·) be the rank function of the graphic matroid over A. We define a set function f
over E by

f(S) = rank(AS).

Equivalently, f(S) is n minus the number of connected components in the hypergraph induced by
S. Note that the choice of spanning tree Ae for each hyperedge e does not effect f(S). (In fact,
any set of edges spanning the endpoints of e would have the same effect.) It is easy to that f is
monotone, submodular, normalized, and integer-valued, because the rank function also has these
properties. f has rank r ≤ n− 1. We call f the hypergraphic polymatroid function as it defines a
natural polymatroid over E.

A convenient property of f is that the marginal values of f have a clean connection to contracting
edges in H.5 For a set of edges S, consider the function f(· |S) of marginal values with respect to S.
We claim this defines the corresponding function for the hypergraph H/S obtained by contracting
all the edges in S. Indeed, for a set of hyperedges T ,

f(T |S) = f(T ∪ S) − f(S) = rank(AT ∪AS) − rank(AS)

is the same as the rank of AT in the graph obtained by contracting AS .
We first identify k-cuts of H with quotients of f .

Lemma 5.1. The quotients in f are the k-cuts of H.

Proof. For a set of vertices U , let EU be the set of hyperedges with all endpoints in U .
Consider a k-cut consisting of the edges crossing a partition (U1, . . . , Uk) of V . We claim that

for S = EU1 ∪ · · · ∪EUk
, Q = E \ span(S) defines a quotient equal to k-cut induced by (U1, . . . , Uk).

First, if an edge e ∈ E does not cross (U1, . . . , Uk), then it is contained in some Ui, hence e /∈ Q.
5This is the main reason we prefer this polymatroidal model for hypergraph cuts over one based on the hypergraphic

matroid.
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Conversely, if e crosses (U1, . . . , Uk), then there is an auxiliary edge a ∈ Ae cut by some Ui. This
auxiliary edge is not spanned by AS in the graphic matroid, hence

f(S + e) ≥ rank(AS + a) > rank(AS) = f(S).

Thus e /∈ span(S), hence e ∈ Q. We conclude that Q equals the k-cut induced by (U1, . . . , Uk).
Conversely let Q = E \ S be a quotient, where S ⊆ E is closed. Let U1, . . . , Uk be the connected

components of AS . We claim that Q equals the k-cut induced by (U1, . . . , Uk). First we show that
Q is a subset of the k-cut. If e ∈ Q, then there is an auxiliary edge a ∈ e that is not spanned by AS

in the graphic matroid. This implies e properly crosses (U1, . . . , Uk). Conversely, if a hyperedge
e properly crosses (U1, . . . , Uk), then there is an auxiliary edge a ∈ A with endpoints in distinct
parts Ui. This auxiliary edge a is not spanned by AS , hence e is not spanned by S, and e ∈ Q. We
conclude that Q equals the k-cut induced by U1, . . . , Uk.

A refined count on the number of quotients. If we apply theorem 1.1 to the hypergraphic
polymatroid function, then we obtain a sparsifier with O

(
n log(mn)/ϵ2

)
edges. Our next goal is to

replace the log(mn)-factor with log(n).
The log(mn)-factor originates in lemma 3.2, which (in this context) states that there are at most

(mn)O(t) quotients of weight at most tκf , for t ∈ N. The following lemma refines the argument in
lemma 3.2 and replaces the (mn)-term with n.

Lemma 5.2. For each integer t ∈ N, there are at most nO(t) quotients of f with weight at most tκf .

Proof. We recall the ideas of the proof of lemma 3.2, with variables renamed for our setting.
Consider a randomized collection of quotients of f generated as follows. Initially let R = ∅.

While f(R) < r − t− 1, we add to R an edge e ∈ E \ span(R) randomly sampled in proportion to
its weight w(e). This produces a randomized set R with f(R) ≥ r − t− 1. We return all quotients
disjoint from R with total weight at most tκf .

The argument in lemma 3.2 has two parts. The first part argues that there are at most mt+1

quotients disjoint from R. The second part argues that for any fixed quotient Q with weight at
most tκf , Q is disjoint from R with probability at least 1/

(r
t

)
. Together this shows that there are at

most mt+1(r
t

)
quotients of weight at most tκf .

We modify the first part of the argument to show that there are at most n2(t+1) quotients disjoint
from R. Again, we recall the argument from lemma 3.2 that obtained the bounded of mt+1. Fix
R with f(R) ≥ r − t− 1. For a quotient Q = X̄ disjoint from R, there is a set S of at most t+ 1
edges from X such that span(R ∪ S) = X. Conversely for any set S of at most t+ 1 edges disjoint
from R, span(R ∪ S) is the complement of a quotient disjoint from R. This shows that there are at
most ∑t+1

i=0
(m

i

)
≤ mt+1 quotients disjoint from R.

We modify this argument by focusing on the underlying graphic matroid. It is still the case that
for a quotient Q = X̄ disjoint from R, there is a set S of at most t + 1 edges from X such that
span(R ∪ S) = X. We modify the argument for the converse direction.

Fix a spanning forest FR of AR. For each set S ⊆ N \R, let FS be a spanning forest of AR∪S

extending FR. Call two edge sets S1, S2 ⊆ R̄ equivalent if FS1 and FS2 span the same subset of A.
If S1 and S2 are equivalent, then span(S1 ∪R) = span(S2 ∪R), and S1 and S2 induce the same
quotient.

This shows that the number of quotients disjoint from R is bounded above by the number of
equivalence classes of sets S ⊆ R̄. The equivalence class of a set S is defined by any spanning
forest of AS ∪ AR extending FR. This spanning forest extends FR with at most t edges from A.
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When choosing these edges, parallel edges in A are equivalent, so each choice is from at most
(n

2
)

possibilities. This shows that there are at most
t+1∑
i=0

(
n2

i

)
≤ n2(t+1)

equivalence classes, hence at most n2(t+1) quotients disjoint from R.
The rest of the proof of lemma 3.2, replacing mt+1 with n2t+1 as an upper bound for the number

of quotients disjoint from R, leads to the conclusion that there are at most nO(t) quotients of weight
at most tκf .

Replacing lemma 3.2 with lemma 5.2 in the proof of theorem 1.1 decreases the number of output
edges from O

(
n log(mn)/ϵ2

)
to O

(
n log(n)/ϵ2

)
.

Nearly linear time strength decompositions in hypergraphs. It remains to show that an
approximate strength decomposition of a hypergraph can be computed in nearly linear time.

While a sparsification based on the hypergraphic polymatroid function f is not exactly a case of
matroid sparsification, we still follow the same general framework. Recall that the first ingredient of
the matroid sparsification algorithm was a subroutine (described in lemma 4.1) that extract subsets
with strength k and strength-ratio close to k for small integer weights and strength parameter k.
The following lemma describes the substitute for the hypergraphic polymatroid function.

Lemma 5.3. Let H = (V,E) be a hypergraph with integer edge weights, and let k ∈ N and ϵ > 0 be
parameters. In Õ(pk/ϵ) time, one can either:

(i) Certify that f has strength κf ≥ k.
(ii) Compute a closed set S ⊊ E with strength κS ≥ k and strength-ratio φ(S) ≤ (1 + ϵ)λ.

The proof of lemma 5.3 is placed in appendix B. Similar to the case for matroids, it is a
combinatorial algorithm that is easier to discuss separately.

Given lemma 5.3, we obtain a sparsification algorithm for hypergraphs and polynomially bounded
weighted by taking the matroid sparsification algorithm and replacing the use of lemma 4.1 with
lemma 5.3. We omit the proof as it is exactly the same beyond updating variable names and
terminology in a straightforward manner. (See also remark 4.1.) Similar to the matroid case, the
overall running time is a logarithmic factor over the running time of lemma 5.3 with strength
parameter k = O(log(mn)) and constant error, hence Õ(p) overall. General edges weights reduce to
polynomial weights in the same way as for matroid sparsification, as discussed in appendix D.

6 Coverage and SAT sparsification: proofs of theorem 1.5 and corollary 1.6

In this section, we prove the sparsification results for set systems and for SAT.
For set systems the setup is as follows. Let U be a finite set of m points with positive weights

w ∈ RU
>0, and let F be a collection of n subsets of U . Let ϵ ∈ (0, 1). The goal is to compute a subset

of O
(
n log(n)/ϵ2

)
points (Ũ , w̃), where Ũ ⊆ U and w̃ ∈ RŨ

>0, such that∣∣∣∣∣∣w
 ⋃

S∈F ′

S

− w̃

Ũ ∩
⋃

S∈F ′

S

∣∣∣∣∣∣ ≤ ϵw

 ⋃
S∈F ′

S

. (9)

for all subcollections F ′ ⊆ F .
For SAT we have the following setup. Let φ(x1, . . . , xn) be a CNF formula over n variables. Let

C = {C1, . . . , Cm} be the m clauses of φ, and let w : C → R>0 be a set of weights on the clauses. The
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goal is to compute a reweighted subset of O
(
n log(n)/ϵ2

)
clauses (C̃, w̃), where C̃ ⊆ C and w̃ ∈ RC′ ,

such that for any assignment of x1, . . . , xn ∈ {True, False} satisfying the clauses S ⊆ C,∣∣∣w(S) − w̃
(
S ∩ C̃

)∣∣∣ ≤ ϵw(S). (10)

We briefly describe a reduction from SAT sparsification to coverage sparsification. At a high
level, given a SAT formula φ(x1, . . . , xn) with weighted clauses (C, w), we create a set system where
each clause is a point, and each literal assignment (xj = true or xj = false) maps to the set of all
clauses satisfied by the assignment. More formally, for each clause Ci, we create a point pi with the
same weight, w(pi) = w(Ci). For each variable xj , we have two sets: a set Sj consisting of all points
pi corresponding to clauses Ci satisfied by setting xj = true, and a set Tj consisting of all points
pi corresponding to clauses Ci satisfied by setting xj = false. It is easy to see that a reweighted
subset of points satisfying (9) for all subcollections of sets F ′ gives a reweighted subset of clauses
satisfying (10) for all possible assignments of x1, . . . , xn.

Thus corollary 1.6 reduces to theorem 1.5. As mentioned in section 1, there are two ways to
prove theorem 1.5. The first way is a direct approach that yields a faster and simpler algorithm.
The second way is by a reduction to hypergraph sparsification essentially due to [KK15]. We present
the direct approach first, and sketch the reduction to hypergraph sparsification at the end of the
section for the sake of completeness.

The direct proof of theorem 1.5 consists of three parts. The first is the structural aspect regarding
the existence of a sparsified set of points (Ũ , w̃) as described above (up to log-factors). We address
this by reducing to submodular quotient sparsification. The second part refines part of the proof of
theorem 1.1 to reduce

∣∣∣Ũ ∣∣∣ from O
(
n log(nm)/ϵ2

)
to O

(
n log(n)/ϵ2

)
. The third part shows how to

compute (Ũ , w̃) in nearly linear time with high probability.
From unions to quotients. Consider the “hitting set” function f defined by

f(X) = |{S ∈ F : X ∩ S ̸= ∅}| for X ⊆ U .

It is easy to see that f is normalized, monotone, submodular, and integer-valued. We also have
f(U) = n.

The following lemma connects the quotients of f with unions of subcollections of F .
Lemma 6.1. A set Q ⊆ U is a quotient iff it is the union Q = ⋃

S∈F ′ of some F ′ ⊆ F .
Proof. Suppose Q = ⋃

S∈F ′ for some F ′ ⊆ F . Let X = Q̄; we need to show that X is closed. By
definition, X is the set of points that don’t hit any set in F ′. If y ∈ span(X), then all sets hit by y
are hit by X. In particular, y does not hit any set in F ′, so y ∈ X. Thus Q is a quotient.

Conversely, suppose Q = X̄ is a quotient. Let FX be the collection of sets hit by X, and let
F ′ = F \ FX . By definition the sets in F ′ are contained in Q. On the other hand, for all p ∈ Q,
since p /∈ span(X), we have ∣∣{S ∈ F ′ : p ∈ S

}∣∣ = f(p |X) > 0,

hence p is in some set of F ′. Thus Q equals the union of F ′.

A refined count on the number of unions. By lemma 6.1, the quotients of f are exactly
the unions of subcollections of sets. By theorem 1.1, there exists a set of weights w̃ with at most
O
(
n log(mn)/ϵ2

)
nonzeroes that preserves the weight of every quotient of f , hence the weight of

every union of sets, up to a (1 + ϵ)-factor. The next step is to reduce the log(mn)-factor to log(n).
The log(mn)-factor comes from lemma 3.2, which states that there are at most (mn)t+1 unions

of weight at most tκf , for t ∈ N. The following lemma refines the argument in lemma 3.2 and
reduces the base of the exponent from mn to 2n.
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Lemma 6.2. For all t ∈ N, there are at most (2n)t quotients of weight at most tκf .

Proof. Let R ⊆ U with f(R) ≥ r − t − 1. The proof of lemma 3.2 argues that there are at
most mt+1 quotients disjoint from R. We claim that there are at most 2t+1 quotients disjoint
from R. Plugging this new bound into the rest of the proof of lemma 3.2 shows that there are
2t+1(r

t

)
≤ (2r)t+1 = (2n)t+1 quotients of weight at most tκf , as desired.

For a quotient Q to be disjoint from R, all of the sets hit by Q must be disjoint by R. Moreover,
by lemma 6.1, every quotient Q is the union of the subfamily of sets hit by Q. Thus every quotient
Q disjoint from R is a union of sets disjoint by R. There are at most t+ 1 sets in R, hence at most
2t+1 quotients disjoint from R.

Replacing lemma 3.2 with lemma 6.2 in the proof of theorem 1.1 leads to a reweighted subset of
O
(
n ln(n)/ϵ2

)
points preserving the weight of every union up to a (1 + ϵ)-approximate factor.

A nearly linear time algorithm. Lastly, we consider the algorithmic aspect of theorem 1.5,
which claims that a set system can be sparsified in nearly linear time. The bottleneck is in computing
an approximate strength decomposition. We let N = ∑

S∈F |S| denote the total size of the set
system. In the sequel, the “strength”, “strength-ratio”, and so forth of a set system refers to that of
the associated hitting set function f . Without loss of generality, we may assume all points have
nonzero weight (cf. lemma 2.2).

We build an approximate strength decomposition by iteratively computing sets that are strong
and have low strength-ratio relative to the previous set in the decomposition. The following lemma
describes a subroutine for extracting one such set at a time. It is the most important and involved
part of the overall algorithm.

Lemma 6.3. Let (U ,F) be a set system of total size N . Let U be weighted with minimum weight 1
and the total weight W . Let ϵ ∈ (0, 1) and λ > 0 be parameters. In O

(
N log2(W )/ϵ2

)
time, one

can compute a set of points U ′ ⊆ U such that:
(a) U ′ has strength κU ′ ≥ λ.
(b) If U ′ ̸= U , then U ′ has strength ratio φ

(
U ′) < (1 + ϵ)λ.

The proof of lemma 6.3 is placed in appendix C as it is easier to understand separately. We
mention in passing that the subroutine is based on the push-relabel flow algorithm applied to a
fractional matching problem between sets and points where a set can only be matched to points in
the set.

Next we use lemma 6.3 to construct an approximate strength decomposition for polynomially
bounded weights.

Lemma 6.4. For polynomially-bounded weights, a O(1)-approximate strength decomposition can be
computed in O

(
N log3(m+ n)

)
time.

Proof. By rescaling, we may assume the minimum weight is at least m. Consequently, any strength-
ratio is at least 1. Since the maximum weight is poly(m,n), the maximum possible finite strength-
ratio is bounded above by poly(m,n).

The algorithm is as follows. Let U0 = U , λ0 = 1, and k = 0. We maintain the invariant that Uk

has strength at least λk. While Uk ̸= ∅, we apply lemma 6.3 with strength parameter 2λk and error
parameter ϵ = 1 to Uk, returning a set U ′. If U ′ = Uk then we replace λk with 2λk and repeat with
the same index k. Otherwise we set Uk+1 = U ′, λk+1 = 2λk, and k = k + 1.

This produces a nested sequence of sets (U0 = U) ⊋ U1 ⊋ · · · ⊋ (Uk = ∅). For i ∈ {0, . . . , k}, Ui

has strength λi. This implies that k = O(log(m+ n)) because 2k ≤ λk−1 ≤ κUk−1 ≤ poly(m,n).
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For i ∈ [k], Ui has strength-ratio φ(Ui | Ui−1) ≤ 4λi−1 ≤ 4κUi−1 . Thus U1, . . . ,Uk satisfies the
first three properties of a O(1)-approximate strength decomposition. We obtain a O(1)-approximate
strength decomposition as a subsequence by removing any Ui where φ(Ui | Ui−1) > φ(Ui+1 | Ui).

As for the running time, we have O(log(m+ n)) iterations invoking lemma 6.3, each of which
takes O

(
N log2(m+ n)

)
time. Extracting the strength decomposition as a subsequence can be

done in linear time (by the same method as for matroids; see page 20). Overall we obtain a
O
(
N log3(m+ n)

)
running time.

The only nontrivial step in the algorithm quotient-sparsification (fig. 1 on on page 11) is to
compute an approximate strength decomposition. By lemma 6.4, this step can be implemented in
nearly linear time for polynomially bounded weights. This gives a nearly linear time sparsification
algorithm for polynomially bounded weights. One can reduce general weights to polynomially
bounded weights without increasing the running time, as described in appendix D.

This completes the proof of the algorithmic component of theorem 1.5.
Remark 6.1. The running time can be improved by a logarithmic factor by opening up the black
box underlying lemma 6.3. We sketch the ideas. As mentioned above, the algorithm underlying
lemma 6.3 is a push-relabel flow algorithm. At a high-level, the vertices of this flow problem
correspond to the sets F and the points U , where each set S ∈ F is a source of capacity λ and
each point p ∈ U is a sink of capacity w(p). From one instance of lemma 6.3 to the next, instead
of starting a new instance of the push-relabel algorithm, one can keep the configuration from the
previous instance, and update it by increasing the source capacity of each set to the next (larger)
value of λ. We then run the push-relabel algorithm from this updated configuration to solve the
next instance of lemma 6.3. In this manner, the total running time over all instances of lemma 6.3
is that of a single instance, O

(
N log2(m+ n)

)
.

Reduction to hypergraphs. An alternative proof of theorem 1.5 leverages the hypergraph
sparsifier from section 5. [KK15] described a reduction from SAT sparsification to hypergraph
sparsification. The reduction from coverage sparsification to hypergraph sparsification described
below is based on essentially the same idea and is included for the sake of completeness.

Given points U , sets F , and weights w, we construct a weighted hypergraph H = (V,E) as
follows.

• For each set S ∈ F , we have a vertex vS .
• We have an additional auxiliary vertex v⋆.
• For each point p, we have a hyperedge ep consisting of v⋆ and vS for each set S containing p.

The weight of ep is w(p).
We claim that each union of sets in F corresponds to a cut of hyperedges. Consequently, a

cut-preserving sparsifier for H gives a coverage preserving sparsifier for (F ,U).
Let F ′ ⊆ F be a collection of sets, and let Q = ⋃

S∈F ′ S be their union. Consider the cut in H
induced by the set of vertices corresponding to F ′, W = {vS : S ∈ F ′}. If an ep in the cut, then to
be incident to a vertex in W , p must lie in some set in F ′. Thus p ∈ Q for every edge ep in the cut.
Conversely, if p ∈ Q, then ep is incident to some vertex in W . Since ep is also incident to v⋆, and
v⋆ /∈ W , the edge ep is cut by W . Thus the edges cut by W are exactly the edges corresponding to
points in Q.

Observe that the number of vertices of H, is one more than the number of sets in F . Thus
hypergraph sparsifier yields O

(
|F| log(|F|)/ϵ2

)
edges, which implies the same number of points in

the corresponding coverage sparsifier, as desired.
Finally, for the sake of running time, we observe that H takes linear time to create, and the total

size of H matches the total size of the set system up to constant factors. Thus the nearly linear time
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algorithm for hypergraph sparsification yields a nearly linear running time for sparsifying set systems.
We note that the hypergraph sparsification algorithm is slower than the direct algorithm presented
above by logarithmic factors, and more involved sparsifier for H gives a coverage preserving sparsifier
for (F ,U).

Let F ′ ⊆ F be a collection of sets, and let Q = ⋃
S∈F ′ S be their union. Consider the cut in H

induced by the set of vertices corresponding to F ′, W = {vS : S ∈ F ′}. If an ep in the cut, then to
be incident to a vertex in W , p must lie in some set in F ′. Thus p ∈ Q for every edge ep in the cut.
Conversely, if p ∈ Q, then ep is incident to some vertex in W . Since ep is also incident to v⋆, and
v⋆ /∈ W , the edge ep is cut by W . Thus the edges cut by W are exactly the edges corresponding to
points in Q.

Observe that the number of vertices of H is one more than the number of sets in F . Thus the
hypergraph sparsifier yields O

(
|F| log(|F|)/ϵ2

)
edges, which implies the same number of points in

the corresponding coverage sparsifier, as desired.
Finally, for the sake of running time, we observe that H takes linear time to create, and the total

size of H matches the total size of the set system up to constant factors. Thus the nearly linear
time algorithm for hypergraph sparsification yields a nearly linear running time for sparsifying set
systems. We note that the hypergraph sparsification algorithm is more complicated, and slower by
logarithmic factors, than the direct algorithm presented above.
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A Computing strong and low strength-ratio sets in the rank oracle model: proof
of lemma 4.1

This section describes and analyzes an algorithm fulfilling the requirements of lemma 4.1. The input
consists of a matroid M = (N , I), integer weights w : N → N, and parameters k ∈ N and ϵ ∈ (0, 1).
We assume oracle access to the rank function, and let Qrank denote the time to query the oracle
when discussing running times. The goal is to either (a) certify that (M, w) has strength k, or (b)
output a closed subset S that has strength at least k and strength-ratio at most (1 + ϵ)k.

Preprocessing. For technical reasons we prefer the weights to be bounded above by k. The
following lemma shows that we can obtain this by contracting all elements with weight greater than
k.
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Lemma A.1. Let H be the set of elements of weight ≥ k. Let S ⊆ N \H.
(i) If S has strength at least k in M/H, then S ∪H has strength at least k in M.

(ii) The strength-ratio of S in M/H equals the strength-ratio of S ∪H in M.
(iii) If S is closed in M/H, then S ∪H is closed in M.

Proof. For the first claim, for any set A ⊆ S ∪H, we have

w(S ∪H) − w(A) = w(S) − w(A ∩ S) + w(H \A)
(a)
≥ k(rank(S |H) − rank(A ∩ S |H)) + w(H \A)
= k(rank(S ∪H) − rank(A ∪H)) + w(H \A)
= k(rank(S ∪H) − rank(A)) + w(H \A) − k rank(H |A)
(b)
≥ k(rank(S ∪H) − rank(A)) + w(H \A) − k|H \A|
(c)
≥ k(rank(S ∪H) − rank(A)).

Here (a) is by the strength of S in M/H. (b) is because rank(H |A) ≤ |H \A|. (c) is because each
element in H has weight at least k. That is, φ(A |S ∪H) ≥ k.

For the second claim, let λ be the strength-ratio of S in M/H. We have

w(N ) − w(S ∪H) = w(N \H) − w(S) = λ(rank(N |H) − rank(S |H)) = λ(r − rank(S ∪H)),

so S ∪H also has strength-ratio λ.
For the third claim, let e ∈ span(S ∪H). We want to show that e ∈ S ∪H. If e /∈ H, then have

rank(S + e |H) − rank(S |H) = rank(S ∪H + e) − rank(S ∪H) (d)= 0

where (d) is because e ∈ span(S ∪H). Thus e ∈ spanH(S). Since S is closed in M/H, e ∈ S.

We use lemma A.1 to reduce the maximum weight to k as follows. Let H be the set of elements
of weight ≥ k. As a preliminary step, we contract H in O(nQrank) time. We run the algorithm
(described below) in M/H. If the algorithm certifies that M/H has strength k, then by lemma A.1,
M has strength k. If the algorithm produces a set S ⊆ N \H with strength k and strength-ratio
at most (1 + ϵ)k in M/H, then by lemma A.1, S ∪H has strength k and strength-ratio at most
(1 + ϵ)k in M.

Henceforth we assume that all weights are bounded above by k.

Components of a push-relabel algorithm. The algorithm here is based on the matroid
partition push-relabel algorithm of [FM12]. The algorithm maintains a family of k bases B1, . . . , Bk

and integer labels ℓ : N → Z≥0.
An element e is active if it appears in more than w(e) bases. If there are no active elements,

then B1, . . . , Bk is a feasible packing of k bases and certifies that N has strength k.
The labels are initially set to 0 and are bounded above by a parameter h = O(log(nk)/ϵ) called

the height (with one minor exception explained below). For each label j, and set of elements X ⊆ N ,
we let Xj

def= X ∩ ℓ−1(j) denote the subset of elements with label j. We let X≤j
def= ⋃

i≤j Xi and
X≥j

def= ⋃
i≥j Xi be the subsets of elements with labels at most and at least j, respectively.

Invariants. B1, . . . , Bk and ℓ obey the following invariants.
(I) ℓ(e) = 0 for any element e appearing in fewer than w(e) bases.

(II) Bi,≤j spans N≤j−1 for all j.
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Basic operations. The high-level goal is to increase the label of all active elements to h. Each
iteration the algorithm selects an active element e with label ℓ(e) = j < h and executes one of two
operations:

1. Push: Exchange e out of Bi for some d ∈ Nj−1 such that Bi − e+ d ∈ I.
2. Relabel: Increase ℓ(e) by 1.

One can push e out of Bi iff Bi − e does not span N≤j−1. Therefore, to preserve invariant (II), e
can be relabeled iff e cannot be pushed.

In addition we have the following operation to remove elements from the system.
3. Delete: Remove e from N .

To delete an element e while preserving invariants (I) and (II), we take the following steps. We
first set w(e) = 0, which excludes e from consideration from invariant (I). Henceforth we focus
only on invariant (II). While e is active and has label ℓ(e) < h+ 2, we try to push or (otherwise)
relabel e. (We briefly allow ℓ(e) to exceed h.) Eventually either e is no longer active (and not in
any Bi) or ℓ(e) = h+ 2. If e is not active, then we can remove e from the system without violating
invariant (II). If e is active, then it has ℓ(e) = h+ 2, while all other elements have label at most h.
By invariant (II), Bi,≤h+1 = Bi − e spans N − e for all Bi containing e. We can now remove e from
N and all Bi while preserving invariant (II).
Counting the basic operations. We first give upper bounds on the total number of push,
relabel, and delete operations (including push and relabel operations induced by deletion). There
are at most O(nh) relabel operations since each element gets relabeled at most O(h) times.

To account for the push operations, we define a potential Φ by Φ = ∑k
i=1

∑
e∈Bi

ℓ(e). Φ is
initially 0, and always nonnegative. Each relabel increases Φ by at most k, and removing an element
can only decrease Φ. Each push decreases Φ by 1. As the total increase to Φ is O(nkh), there are
at most O(nkh) push operations.

For deletions, of course, each element can be deleted at most once.
Implementation details and running time bounds. We now give more specific implementation
details and derive upper bounds on the running time assuming oracle access to the rank function.

Recall that the algorithm repeatedly selects an active element e with label ℓ(e) < h and tries to
either push e out of some Bi containing e, or otherwise relabels e. It is easy to keep track of the
active elements with label less than h so that we can identify the next active element in O(1) time.

Given an active element e with label ℓ(e) = j, and a base Bi containing e, the first step is to
decide if e can be pushed out of Bi. Such a push is possible iff Bi,≤j − e does not span N≤j−1, which
holds iff

rank((Bi,≤j ∪ N≤j−1) − e) = rank(Bi,≤j ∪ N≤j−1) = |Bi,≤j |.

Thus a single query to the rank oracle determines whether e can be pushed out of Bi.6 If e can be
pushed out of Bi, then the next step is to identify an element d ∈ Nj−1 to exchange with e. To
identify such an element d, we maintain Nj−1 in a list {d1, . . . , dm}, and binary search for the last
index ℓ such that

rank((Bi,≤j ∪ {d1, . . . , dℓ}) − e) = |Bi,≤j |.

Then dℓ is the desired element d. Here the binary search has O(log n) iterations and each iteration
makes 1 query to the rank oracle.

In summary, it takes 1 query to decide if e can be pushed out of a base Bi, and O(log n) queries
to identify an element d that can be exchanged with d. Given an active element e, we test if e can

6Here we count the time spent assembling the query as part of the query.
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be exchanged out of at most k bases before deciding to either (a) push e out of some Bi or (b)
relabel e. We charge the O(k) oracle queries to the ensuing push or relabel. Each push also costs
an additional O(log n) queries. All put together, we spend O(nk(k + log(n))hQ) time on push and
relabel operations.

Lastly, each deletion reduces to push and relabel operations already accounted for plus O(1)
time. An element can only be deleted once, so this adds up to O(n) time which is negligible.

When the push-relabel algorithm halts. Recall that our overall goal is to either certify that
M has strength k, or identify a subset S with strength k and strength-ratio φ(S) ≤ (1 + ϵ)k. Now,
the push-relabel algorithm halts when all active elements have label h. If there are no active elements
then this certifies that N has strength k, as desired. The following lemma is about the alternative
case where there are still active elements, and shows that there is a set of the form N≤j that has
the desired strength-ratio (1 + ϵ)k.

Lemma A.2. Suppose all active elements have label h = O(log(nk)/ϵ). Then either:
(i) There are no active elements, and B1, . . . , Bk certifies that the (remaining) ground set has

strength k.
(ii) There exists an index j ∈ {1, . . . , h− 1} such that w(N≥j) ≤ (1 + ϵ)w(N≥j+1). We have

rank(N≤j−1) < rank(N ) and φ(N≤j−1) ≤ (1 + ϵ)k.

Proof. Suppose there is at least one active element. Then Nh ̸= ∅, and w(Nh) ≥ 1.
Since h ≥ c log(nk)/ϵ for a sufficiently large constant c, w(Nh) ≥ 1, and w(N ) ≤ nk, there

exists an index j ∈ {1, . . . , h− 1} such that w(N≥j) ≤ (1 + ϵ)w(N≥j+1). For this index j, and
each Bi, we have |Bi,≤j | ≥ rank(N≤j−1) because Bi,≤j spans N≤j−1 (invariant (II)). We also have
w(N≥j+1) ≤

∑k
i=1|Bi,≥j+1| because each e ∈ N≥j+1 appears in at least w(e) bases Bi (invariant (I)).

Altogether, we have

(1 + ϵ)k rank(N≤j−1) + w(N≥j) ≤ (1 + ϵ)(k rank(N≤j−1) + w(N≥j+1))

≤ (1 + ϵ)
k∑

i=1
|Bi| = (1 + ϵ)k rank(N ).

Rearranging, we have

w(N≥j) ≤ (1 + ϵ)k(rank(N ) − rank(N≤j−1)).

Since w(N≥j) > 0, this implies that rank(N≤j−1) < rank(N ). Dividing both sides by rank(N ) −
rank(N≤j−1) gives φ(N≤j−1) ≤ (1 + ϵ)k, as desired.

Putting it altogether: proof of lemma 4.1. Lemma A.2 shows that after running the push-
relabel algorithm, if we do not certify M to have strength k, we instead have a set S = N≤j with
strength-ratio φ(S) ≤ (1 + ϵ)k. A natural idea is to recurse on S, either certifying that S has
strength k or recursing on a smaller subset with the desired strength ratio. (In the base case, S = ∅,
and ∅ has strength +∞.)

The only issue with the recursive approach is the efficiency. It is possible that rank(S) =
rank(N ) − 1 in each recursive call, resulting in a depth of recursion of r. To remove the r-factor
overhead, we do not re-initialize the push-relabel algorithm on S. Instead we delete all of the
elements outside of S, and continue the push-relabel algorithm from there. This way all of the
push-relabel computation over all subproblems can be accounted for as parts of a single instance of
the push-relabel algorithm. See fig. 3 on the following page for pseudocode.
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1. Initialize the push-relabel algorithm.
2. Repeatedly:

A. Continue the push-relabel algorithm until all active elements have label h = O(log(nk)/ϵ).
B. If B1, . . . , Bk is a feasible packing, then return the span of all the remaining elements.
C. Otherwise let j ∈ {1, . . . , h− 1} be such w(N≥j) ≤ (1 + ϵ)w(N≥j+1). Delete each element

in N≥j+1.

Figure 3: Computing a subset with strength k and strength-ratio at most (1 + ϵ)k.

Let Sout be the set of elements returned by the algorithm. B1, . . . , Bk is a feasible packing of
k bases in Sout, so by lemma A.2, B1, . . . , Bk certifies that Sout has strength at least k. (This
includes the case where Sout = ∅ and B1, . . . , Bk = ∅.) Now suppose Sout ̸= N . Then the algorithm
has ℓ iterations for some ℓ > 1. For i ∈ {0, . . . , ℓ}, let Si be the remaining set of elements after
i iterations. (E.g., S0 = N and Sout = span(Sℓ).) By lemma A.2, for each index i ∈ ℓ, we have
φ(Si |Si−1) ≤ (1 + ϵ)k. Thus

w(N ) − w(Sout) =
ℓ∑

i=1
w(Si−1) − w(Si)

≤ (1 + ϵ)k
ℓ∑

i=1
rank(Si−1) − rank(Si)

= (1 + ϵ)k(rank(N ) − rank(Sℓ))
= (1 + ϵ)k(rank(N ) − rank(Sout))

by telescoping series, hence φ(Sout | N ) ≤ (1 + ϵ)k.
Lastly we bounded the running time. As discussed above, all the work spent within the push-

relabel framework takes O(nk(k + log(n)) log(nk)Qrank/ϵ) time. We also need to account for the
work identifying the index j in step (2.C). It is easy to maintain w(N≥j) for all j in O(1) time
per relabel and O(h) time per delete. It is also easy to track the set of indices satisfying the
conditions of (2.C) with constant overhead. Thus the total time spent on (2.C) is bounded above
by O(nkh) = O(nk log(nk)/ϵ), and negligible. Lastly, computing the span of the final set Sℓ takes
O(nQrank) time.

This concludes the proof of lemma 4.1.

B Computing strong and low strength-ratio sets in hypergraphs: proof of
lemma 5.3

This section presents an algorithm which fulfills the requirements of lemma 5.3. The input consists
of a hypergraph H = (V,E) (with m edges, n vertices, and total size p), integer weights w ∈ ZE

≥0,
and parameters k ∈ N and ϵ > 0. Let f be the hypergraphic polymatroid function for H (defined in
section 5). The goal is to either certify that the hypergraph has strength at least k, or compute a
closed set of edges S ⊊ E with strength-ratio at most (1 + ϵ)k and strength at least k.

Contracting heavy edges. For technical reasons we prefer the weight of each edge e to be
bounded above by kf(e). The following lemma allows us to contract edges with weight exceeding
this bound.
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Lemma B.1. Let D be a set of hyperedges e with weight w(e) > kf(e). Let H ′ = (V ′, E′) be the
hypergraph obtained by contracting and removing D. Let S ⊆ E′.

(i) If S has strength at least k in H ′, then S ∪D has strength at least k in H.
(ii) If S has strength-ratio φH′(S) = λ in H ′, then S ∪D has strength-ratio φ(S ∪D) = λ in H.

(iii) If S is closed in H ′, then S ∪D is closed in H.

Proof. For the first claim, for any set A ⊆ S ∪D, we have

w(S ∪D) − w(A) ≥ w(S) − w(A ∩ S) + w(D \A)
≥ k(f(S |D) − f(A ∩ S |D)) + w(D \A)
= k(f(S ∪D) − f(A ∪D)) + w(D \A)
= k(f(S ∪D) − f(A)) + w(D \A) − kf(D |A)
(a)
≥ k(f(S ∪D) − f(A)),

hence, φ(A |S ∪D) ≥ k. Here (a) is because

kf(D |A)
(b)
≤ k

∑
e∈D\A

f(e) ≤ w(D \A),

where (b) is by submodularity.
For the second claim, we have

w(E) − w(S ∪D) = w(E \D) − w(S) (c)= λ(f(E |D) − f(S |D)) = λ(f(E) − f(S ∪D)),

where (c) is because λ is the strength-ratio of S in H ′. Thus S ∪D also has strength-ratio λ.
For the third claim, let e be a hyperedge in H spanned by S ∪D in H. We want to show that

e ∈ S ∪ D. Suppose e /∈ D. Recall that the marginal values fD coincide with the hypergraphic
polymatroid function of H ′. We have

fD(S + e) − fD(S) = f(S ∪D + e) − f(S ∪D) (d)= 0

where (d) is because e ∈ spanH(S ∪D). This means that e ∈ spanH′(S). Since S is closed in H ′,
this means that e ∈ S, as desired.

Henceforth we assume that the total weight is at most k∑e f(e) ≤ kp.
Tree packing certificates Let T (1), . . . , T (k) ⊆ A. We say that T (1), . . . , T (k) is a packing if they
collectively include at most w(e) auxiliary edges from each hyperedge e. The algorithm is motivated
by the following lemma.

Lemma B.2. Let T (1), . . . , T (k) be a packing of k spanning forests of A. Then f has strength at
least k.

Proof. Fix a set of hyperedges S. Since T (1), . . . , T (k) is a packing, we have
k∑

i=1
|T (i) \ span(AS)| ≤

k∑
i=1

|T (i) \AS | ≤ w(E) − w(S).

Each T (i), as a spanning forest, has f(E) edges, and at most f(S) auxiliary edges spanned by AS .
Thus

|T (i) \ span(AS)| ≥ f(E) − f(S)

36



for each i. All put together we have

w(E) − w(S) ≥
k∑

i=1
|T (i) \ span(AS)| ≥ k(f(E) − f(S)).

Taken over all S, this shows that f has strength at least k.

From packing bases to matroid intersection. The algorithm tries to compute a packing of k
spanning forests of A to certify the strength of f . However, rather than pack k forests directly, we
reframe the problem as a matroid intersection problem.

For a hyperedge e, let Ae × k denote a set consisting of k copies of each auxiliary edge a ∈ A,
denoted a(1), . . . , a(k). Let A × k

def= ⊔
e∈E Ae × k denote the disjoint union of all these copies.

We have |A× k| ≤ pk. For i ∈ [k], let A(i) def= {a(i) : a ∈ A} and A(i)
e

def= {a(i) : a ∈ A}. For a set
S ⊆ A× k, let S(i) def= S ∩A(i) denote the subset of auxiliary edges with index i.

We define one matroid over A×k that is essentially the k-fold disjoint union of a graphic matroid
over each A(i). More formally, the independent sets are the sets T ⊆ A× k such that for each i ∈ [k],
T (i) ⊆ A(i) forms a forest. The second matroid is the partition matroid over A× k allowing at most
w(e) total auxiliary edges from e (over all i) for all hyperedges e. We let rankg and rankp denote
the rank function and let spang and spanp denote the span function for these graphic and partition
matroids, respectively.

Components of a push-relabel algorithm. We develop a push-relabel algorithm for this
intersection problem based on the more abstract push-relabel framework described by [FM12]. The
algorithm maintains a base T ⊆ A× k in the graphic matroid, a base B ⊆ A× k in the partition
matroid, and integer labels ℓ : A× k → Z≥0 for all auxiliary edges. T being a base means that T (i)

is a spanning forest of A(i) for all i. B being a base means that for every hyperedge e, B contains
exactly w(e) edges from Ae × k. T and B are initialized as arbitrary bases.

We call an auxiliary edge a(i) active if a(i) ∈ T (i) \B. If there are no active auxiliary edges, then
each hyperedge e has at most w(e) auxiliary edges in T . By lemma B.2, this certifies that f has
strength at least k.

We now expand on the integer labels. The integer labels are initially set to 0 and bounded above
by a parameter h = O(log(pk)/ϵ) called the height. For a set of auxiliary edges X ⊆ A, and label j,
let Xj

def= X ∩ ℓ−1(j) denote the subset of auxiliary edges with label j. We let X≤j
def= ⋃

i≥j Xi and
X≤j

def= ⋃
i≤j Xi denote the subsets of auxiliary edges with label at most and at least j, respectively.

We associate each hyperedge with the maximum label over all its auxiliary edges. For j ∈ Z≥0, let
Ej denote the set of hyperedges e where the maximum label over Ae × k is j. Let E≤j

def= ⋃
i≤j Ei

denote the set of hyperedges where all auxiliary edges have label ≤ j, and let E≥j
def= ⋃

i≥j Ei denote
the set of hyperedges with at least one auxiliary edge of label ≥ j.

Invariants. T , B, and ℓ are bound together by the following invariants.
(I) ℓ(a(i)) = 0 for any auxiliary edge a(i) ∈ B \ T (i).

(II) T (i)
≤j spans A(i)

≤j−1 for all j.
(III) B≥j spans A≥j+1 in the partition matroid for all j.

Basic operations. The high-level goal is to either eliminate all active auxiliary edges or increase
their label to h, for a given parameter h ∈ N. We do so by iteratively executing one of three
operations. Given an active auxiliary edge a(i) ∈ Ae × k with label ℓ(a(i)) = j < h, these operations
are:

1. Push: Exchange a(i) into B for some b ∈ Bj−1 ∩ (Ae × k).
2. Pull: Exchange a(i) out of T (i) for some b(i) ∈ A(i)

j−1 \ T (i) such that T (i) − a+ b is a forest.
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3. Relabel: Increase ℓ(a) by 1.
One can push an active a(i) into B iff a(i) /∈ spanp(B≥j). One can pull a(i) out of T (i) iff T (i)

≤j − a(i)

does not span A(i)
≤j−1. To preserve invariants (II) and (III), one can relabel a(i) iff no push or pull

operation is available.
In addition to the operations above, we periodically remove hyperedges from the hypergraph.

For this we introduce one more operation.
4. Delete: Remove a hyperedge e from the hypergraph and Ae × k from the push-relabel system.
We now describe how to remove a hyperedge e without violating invariants (I)–(III). We first

set w(e) = 0, and remove any arcs from Ae × k from B. This excludes e and its auxiliary edges
from consideration for invariants (I) and (III), and we focus on invariant (II). We repeatedly try to
pull or (otherwise) relabel any active a(i) ∈ Ae × k until ℓ(a(i)) = h+ 2 for all active a(i) ∈ Ae × k.
(We briefly allow labels to exceed h, and only for Ae × k.) The pull and relabel operations preserve
invariant (II). The auxiliary edges not in any T (i) can be removed from the system without any
violation. Since there are no auxiliary edges with label h+ 1, the remaining auxiliary edges with
label h+ 2 can now be removed from the system without any violation of invariant (II).
Counting the basic operations. We account for the total number of push, relabel, and pull
operations including those prompted by deletion.

There are at most O(pkh) relabel operations since each auxiliary edge a(i) can be relabeled O(h)
times. There are at most O(pkh) push operations because each push increases |B≤j | for some index
j ≤ O(h), and each |B≤j | is monotonically increasing from 0 to at most pk. To bound the number
of pull operations, we define a potential Φ by

Φ =
k∑

i=1

∑
a(i)∈T (i)

ℓ(a(i)).

Φ is nonnegative and initially Φ is 0. Each relabel increases Φ by at most 1. Pushing does not effect
Φ. Removing an auxiliary edge (at the end of a deletion) does not increase Φ. Pulling decreases Φ
by 1. Since the total increase to Φ is O(pkh), the total number of pulls is O(pkh). In summary, we
have O(pkh) push, pull, and relabel operations.

As for deletions, of course, each hyperedge can be deleted at most once.
Implementation details and running time bounds. Now we specify more concrete imple-
mentation details and obtain real running time bounds. The algorithm repeatedly selects an active
auxiliary edge a(i) ∈ Ae × k and tries to either push a(i) into B or pull a(i) out of T (i). If a(i) cannot
be pushed or pulled, then we relabel a(i). It is important that we try to push an auxiliary edge a(i)

before pulling. It does not matter which active a(i) is selected as long as ℓ(a(i)) < h. The algorithm
stops when ℓ(a(i)) = h for all active a(i).

It is easy to keep track of the active auxiliary edges a(i) with label ℓ(a(i)) < h, so that we can
either select such an a or decide that none are available in O(1) time. For each hyperedge e, it
is easy to track which of its auxiliary edges are in B and at which label, so that given an active
a(i), we can check for and execute a push in O(1) time. These are also easy to maintain as a(i)’s
are relabeled. The remaining challenge is the pull operation. Given a(i) ∈ T (i), we need to quickly
decide if it is possible to pull a(i) out of T (i) for some b(i), and if so, execute the exchange.

We facilitate these operations by maintaining each T (i) in a data structure that maintains the
minimum weight spanning forest (MSF) in a dynamic graph. We appeal to the following bounds
from [HLT01].

Fact. A minimum weight spanning forest can be maintained in a dynamically changing graph in
O
(
log4 n

)
amortized time per edge insertion or deletion.
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Fix i ∈ [k]. At a high-level, each T (i) is maintained as an MSF over A(i) where the edge weights
are generally set to the labels of the auxiliary edges.7 The only exception is that edges in the MSF
have their weight reduced to −1, which forces the edge to stay in the tree until we decide to remove
it at a later point. (An edge weight update translates to a deletion and an insertion.)

Initially all the labels, hence all the weights, are 0. As T (i) acquires edges initially, we set the
weight of each added edge to −1. When an auxiliary edge a(i) is relabeled from j to j + 1, since a(i)

is active, we have a(i) ∈ T (i), and the edge weight of a(i) does not need to be updated.
Given an active hyperedge a(i) ∈ T (i)

j , to test if a(i) can be pulled out of T (i) for some b ∈ T (i)
j−1,

we increase the weight of a(i) from −1 to j − 1/2. If a(i) is replaced by another edge b, then that
edge b is necessarily at label j − 1 because ℓ(b) ≤ j − 1/2 and T (i)

j − a(i) spans A(i)
≤j−2. We pull a(i)

out of T (i) in exchange for b by setting the weight of b to −1 and the weight of a to j. If a(i) is not
replaced by another edge, then a(i) cannot be pulled out for any b ∈ A(i)

j−1. We restore the weight of
a(i) to −1.

Recall that each edge update takes O
(
log4 n

)
amortized time. It takes O(pk) edge updates to

initialize all T (i)’s. It takes O(1) edge updates to test if we can pull an a(i) out of T (i), and also to
execute the pull. If we end up pulling a(i), we can charge this edge update to the subsequent pull.
If not, then the algorithm will promptly relabel a(i), and the edge updates from testing the pull can
be charged to the relabel. Altogether, given the upper bounds for pull and relabel operations above,
we have a total of O(pkh) edge updates, and spend a total of O

(
pkh log4 n

)
time, managing the

T (i)’s over pull and relabel operations.
In summary, the total running time is O

(
pkh log4 n

)
.

Certifying strength k or extracting a low-strength-ratio set. As mentioned above, we run
the push-relabel algorithm until all active auxiliary edges have label h. The following lemma states
that when the push-relabel algorithm stops, we will have either certified that the hypergraph has
strength k, or identified a smaller set of edges of the form E≤j that we can restrict our attention to.

Lemma B.3. Suppose all active auxiliary edges have label h = O(log(n)/ϵ). Either:
(i) There are no active auxiliary edges and T certifies that the current hypergraph has strength k.

(ii) There exists an index j ∈ {2, . . . , h− 1} such that w(E≥j+1) ≤ (1 + ϵ)w(E≥j−1), in which case
f(E≤j) < f(E) and φ(E>j) ≤ (1 + ϵ)k.

Proof. We have already discussed how the lack of active auxiliary edges implies that T certifies
that H has strength k. Suppose there is at least one active auxiliary edge. This implies that Eh is
nonempty, and w(Eh) ≥ 1.

Let j ≥ 1, and consider any hyperedge e ∈ E≥j . Then there is some a(i) ∈ Ae × k with label
ℓ(a(i)) ≥ j. When a(i) was previously relabeled from j − 1 to j, since no push was available, Bj−2
had no other auxiliary edges from e, and all w(e) of the auxiliary edges from e in B were in B≥j−1.
Since |B≥j−1 ∩ (Ae × k)| never decreases over time, B≥j−1 currently has w(e) auxiliary edges from
e as well. Summing over all e ∈ E≥j , we have w(E≥j) ≤ |B≥j−1|.

We also have, for all indices j ∈ Z≥0 and i ∈ [k],

f(E≤j) = rankg

 ⋃
e∈E≤j

A(i)
e

 (a)
≤ rankg

(
A(i)

≤j

) (b)
≤
∣∣∣T (i)

≤j+1

∣∣∣.
Here (a) is because all auxiliary edges of any e ∈ E≤j have label at most j (by definition of E≤j).
(b) is because T (i)

≤j+1 spans A(i)
≤j (by invariant (II)).

7These edge weights over A(i), for the data structure maintaining T (i), should not to be confused with the input
weights w(e) for each hyperedge e.
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1. Initialize the push-relabel algorithm.
2. Repeatedly:

A. Continue the push-relabel algorithm until all active auxiliary edges have label h =
O(log(m)/ϵ).

B. If there are no active auxiliary edges, then return the span of the set of all remaining
hyperedges.

C. Otherwise let j ≤ h− 2 be an index such that w(E≥j+1) ≤ (1 + ϵ)w(E≥j−1). Remove all
hyperedges in E>j from the system.

Figure 4: Computing a subset of hyperedges with strength k (from the proof of lemma 5.3).

Now, since h ≥ c log(pk)/ϵ ≥ c log(w(E))/ϵ for a sufficiently large constant c, and w(Eh) ≥ 1,
there exists an index j with 2 ≤ j ≤ h− 1 such that

w(E≥j+1) ≤ (1 + ϵ)w(E≤j−1).

For this choice of index j, we have

(1 + ϵ)kf(E≤j) + w(E≥j+1) ≤ (1 + ϵ)(kf(E≤j) + w(E≥j−1))

≤ (1 + ϵ)
(

k∑
i=1

∣∣∣T (i)
≤j+1

∣∣∣+ |B≥j |
)

= (1 + ϵ)
(

k∑
i=1

|T (i) ∩B|
)

≤ (1 + ϵ)kf(E).

Rearranging, we have

w(E) − w(E≤j) = w(E≥j+1) ≤ (1 + ϵ)k(f(E) − f(E≤j)).

Since the LHS is nonzero, this first implies that f(E≤j) < f(E). Dividing both sides by f(E)−f(E≤j)
gives φ(E≤j) ≤ (1 + ϵ)k, as desired.

Completing the proof of lemma 5.3. We are now prepared to complete the proof of lemma 5.3.
The algorithm we analyze is given in fig. 4 and we first give a high-level description. Recall that one
goal is to find a subset of edges with strength at least k. To this end, we initialize the push-relabel
algorithm and run it until all active auxiliary edges have label h. If there are no active edges, then
we have certified the hypergraph has strength k, as desired. Otherwise, by lemma B.3 we identify an
index j such that E≤j has φ(E≤j) ≤ (1 + ϵ)k. We restrict out attention to these edges by deleting
E≥j+1. Then we continue the push-relabel algorithm and repeat the above steps, until arriving at a
subset of hyperedges with strength k. (This includes the empty set, which has strength +∞.)

Let Sout be the set output by the algorithm and suppose the algorithm runs for ℓ+ 1 iterations.
Let (S0 = E) ⊋ S1 ⊋ · · · ⊋ Sℓ be the descending sequence of sets S at the beginning of each iteration.
As mentioned above, the algorithm certifies Sout = span(Sℓ) has strength k before returning it.
Now suppose Sout ̸= E. We need to show that Sout has strength-ratio φ(Sout |E) ≤ (1 + ϵ)k.

For each i ∈ [ℓ], by lemma B.3, we have

φ(Si |Si−1) = w(Si) − w(Si−1)
f(Si) − f(Si−1) ≤ (1 + ϵ)k.
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Consequently

w(E) − w(Sout) =
ℓ∑

i=1
w(Si−1) − w(Si) ≤ (1 + ϵ)k

ℓ∑
i=1

f(Si−1) − f(Si)

= (1 + ϵ)k(f(E) − f(Sℓ))
= (1 + ϵ)k(f(E) − f(Sout)),

hence φ(Sout |E) ≤ (1 + ϵ)ℓ.
Finally we discuss the running time. The total time spent on the push-relabel algorithm

is O
(
pkh log4 n

)
= O

(
pk log(pk) log4(n)/ϵ

)
. It is easy to track each difference w(E≥j+1) −

(1 + ϵ)w(E≥j−1) for all j with O(1) overhead per relabel. Consequently we can also identify
the index j in step (2.C) in O(1) time.

Lastly, computing the span Sout = span(Sℓ) of the final set of edges Sℓ can be done in nearly
time as follows. First, we build a disjoint union data structure over V labeling the connected
components of Sℓ. For every other edge e, e ∈ span(Sℓ) iff all endpoints of e are in the same
component. This can be realized by querying the disjoint union data structure |e| − 1 pairs of
endpoints of e. Altogether, computing the span takes O(pα(n)) time, where α(· · · ) is the inverse
Ackerman function.

Overall we have a running time of O
(
pk log(pk) log4(n)/ϵ

)
. This completes the proof of

lemma 5.3.

C Computing strong and low strength-ratio sets for coverage: proof of lemma 6.3

In this section we describe and analyze an algorithm which fulfills the requirements of lemma 6.3.
The input consists of a set system (U ,F), positive weights w : U → R>0 over the points, and
parameters k ∈ N and ϵ ∈ (0, 1). Let

f(X) = |{S ∈ F : S ∩X ̸= ∅}|,

for X ⊆ U , be the hitting set function of (U ,F). We may assume without loss of generality that
every set is nonempty. Then f has rank r = f(U) = |F|.

The goal of lemma 6.3 is to either certify that U has strength (at least) k (with respect
to f), or compute a subset U ′ ⊊ U with strength k and strength-ratio φ(U ′ | U) ≤ (1 + ϵ)k.
Letting N = ∑

S∈F |S| denote the total size of the set system, and W = ∑
p∈U w(p), we seek a

O
(
N log2(W )/ϵ2

)
running time.

The algorithm is motivated by the following connection between the strength of the hitting set
system and matchings between the points and sets.
Lemma C.1. The hitting set system (U ,F) has strength at least λ iff there is a fractional matching
between points U and sets S ∈ F such that:

(a) Points p ∈ U are only matched to sets S ∈ F where p ∈ S.
(b) Each point p ∈ U is matched at most w(p) times.
(c) Each set S ∈ F is matched exactly λ times.

Proof. Hall’s matching theorem states that a matching satisfying properties (a)–(c) exists iff for all
F ′ ⊆ F , letting Q denote the set of points hitting F ′, we have

λ
∣∣F ′∣∣ ≤ w(Q).

By lemma 6.1, this condition is equivalent to the inequality above holding for all quotients Q of f .
Since |F ′| = |F| − f(Q̄), this is also the definition of U having strength ≥ λ.
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The high-level approach is to apply push-relabel flow techniques (from [Gol85; Gol87; GT88]) to
the matching problem described in lemma C.1. We first describe the general setup.

We have a directed bipartite graph with vertices V = F ∪ U and edges E directed from each set
to the points in the set:

E = {(S, p) : S ∈ F , p ∈ S}.

Note that |V |/2 ≤ |E| = N where N is the total size of the set system. Each edge e ∈ E has infinite
capacity. Each set S ∈ F is a source of size λ, and each point p ∈ U is a sink of size w(p). We let
x : E → R≥0 denote the flow vector; x can also be interpreted as a fractional bipartite matching.
We let Ex denote the set of edges (with positive capacity) in the residual graph of x. The excess
at a set S is defined as λ minus the total flow leaving S. The excess at a point p is defined as the
total flow entering p minus w(p). A vertex v is active if it has positive excess. We say x is a feasible
matching if there are no active vertices.

Labels and invariants. In addition to a flow x, the push-relabel framework maintains integer
vertex labels ℓ : V → Z≥0 subject to the following invariants:

(I) For all v ∈ V , if excess(v) < 0, then ℓ(v) = 0.
(II) For all (u, v) ∈ Ex, ℓ(v) ≥ ℓ(u) − 1.

A typical push-relabel algorithm works to ensure that ℓ(v) ≥ |V |. (Then there is an empty label
that induces a certifying cut.) Instead we introduce a parameter h ∈ N, called the height, and stop
the algorithm whenever all active vertices have label ≥ h.

Push-relabel operations. The generic push-relabel algorithm iteratively selects an active vertex
v and executes one of the following operations:

1. Push: Push flow down from u to v along an edge (u, v) ∈ Ex such that ℓ(u) = ℓ(v) + 1.
2. Relabel: Increase the label ℓ(v) by 1.

In order to maintain invariant (II), a vertex v can only be relabeled if it is impossible to push from
v.

Removing points. For our setting, we also remove (vertices corresponding to) points p ∈ U from
the flow network. For this we introduce a third operation:

3. Remove: Remove a point p ∈ U from the set system and the flow network, along with any set
S that becomes empty.

We remove a point p ∈ U from the flow network by the following steps. First, we set the flow along
any edge incident to p to 0. Then we remove p and all edges incident to p from the graph. Removing
a point may increase the excess of sets containing p. This does not violate either invariant. Once p
is removed from the flow network, any set S that was previously of the form S = {p} is now an
isolated vertex that can an also be removed without violating either invariant.

By removing any set that becomes empty, we maintain the property that all sets are nonempty.

The push-relabel algorithm. There are several different variations of the push-relabel algorithm,
all following the general format of repeatedly selecting an active vertex v and either pushing from or
relabeling v. For our task, the algorithm is allowed to select any active vertex v with label ℓ(v) < h.
When pushing flow from an active vertex v to a vertex w, the algorithm always pushes as much flow
as possible, which is the minimum of the excess at v and the residual capacity of the edge (v, w).
The push is called a saturating push if it uses all the capacity of the edge and removes the edge
from the residual graph. Otherwise the push is called a non-saturating push. When there are no
active vertices v with label ℓ(v) < h, the algorithm stops.
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Counting the basic operations. Observe that the vertex labels never decrease, and the maximum
label is h. Therefore there are at most h relabel operations per vertex.

We claim there are at most h saturating pushes on each edge (v, w). Indeed, a saturating push
on (v, w) removes (v, w) from the residual graph, and (v, w) can only reappear after a push along
the reverse edge (w, v). Pushing along (v, w) requires ℓ(v) = ℓ(w) + 1 while pushing along (w, v)
requires ℓ(w) = ℓ(v) + ℓ(1), so for the latter to occur, ℓ(w) must have increased by at least 2. Thus
a saturating push (v, w) can be charged to the increase in ℓ(w) by at least 2.

Thus, there are at most O(|V |h) relabel operations and O(|E|h) saturating pushes. It remains
to account for the non-saturating pushes. We define a potential function Φ summing the labels of
all active vertices:

Φ def=
∑

active v

ℓ(v).

Φ is always nonnegative, and initially Φ = 0 because all vertices have label 0. Each saturating
push increase Φ by at most h, and each relabel increases Φ by 1. Removing a point p increases
Φ by at most h for each set S containing p. We charge each per-set increase to the deletion of
the edge (S, p). Between these three operations, the total increase to Φ is O

(
|E|h2). Meanwhile,

each non-saturating push from (say) v to w decreases Φ by at least 1 because the push makes v
inactive, and ℓ(w) = ℓ(v) − 1. Thus the total number of non-saturating pushes is bounded by the
total increase to Φ, O

(
|E|h2).

Running time bounds. Now we translate the operation bounds to proper running times. It is
easy to maintain a list of active vertices with label < h, with O(1) overhead as vertices are activated,
deactivated, and deleted. For each vertex v, and each label i, we maintain a doubly-linked list of
residual edges (v, w) ∈ Ex with ℓ(w) = i. With reverse pointers, one can maintain this list in O(1)
time whenever an edge is added to or removed from Ex, or as the endpoint w has its label increase.
With these data structures in place, we can identify an active vertex v, and identify and execute a
basic operation on v, in constant time. Altogether, the total running time is bounded by the total
number of non-saturating pushes: O

(
|E|h2).

Certifying strength k or extracting low strength-ratio sets. Suppose we run the push-
relabel algorithm until all active vertices have label h = O(log(m)/ϵ). The following lemma states
that when the algorithm stops, we will have either certified that the set system has strength k, or
identified a set of points that we can discard.

For an index i ∈ {0, . . . , h}, we let Ui
def= U ∩ ℓ−1(i) denote the set of (remaining) points with

label i. We let U≤i
def= ⋃

j≤i Uj denote the set of points with label at most j, and similarly let
U≥j

def= ⋃
j≥i Uj .

Lemma C.2. Let ϵ ∈ (0, 1), and suppose all active vertices have label h for h = O(log(m)/ϵ). Then
either:

(i) x is a feasible matching, certifying that the hitting set system has strength at least λ.
(ii) There exists an index i ≤ h−2 such that w(U≥i+1) ≤ (1 + ϵ)w(U≥i+3), in which case f(U≤i) < r

and φ(U≤i) ≤ (1 + ϵ)λ.

Proof. For a set of points U ′ ⊆ U , let

x̂
(
U ′) def=

∑
p∈U ′

∑
S∈F
p∈S

x(S, p)

denote the total fractional quantity of sets matched to points in U ′.
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Suppose x is not a feasible matching. We claim there is at least one point p with label ≥ h− 1.
To prove the claim, we first observe that there is at least one active vertex with label h

because x is not a feasible matching. If this active vertex is a point then this satisfies the claim.
Otherwise the active vertex corresponds to a set S. S is nonempty, and any point p ∈ S has label
ℓ(p) ≥ ℓ(S) − 1 ≥ ℓ(h) − 1, as claimed.

Since h ≥ c log(W )/ϵ for a sufficiently large constant c, w(U≥h−1) ≥ 1, and w(U≥0) = w(U) ≤ W ,
there must be an index i ≤ h− 2 such that w(U≥i+1) ≤ (1 + ϵ)w(U≥i+3) Then

w(U≥i+1) ≤ (1 + ϵ)w(U≥i+3)
(a)
≤ (1 + ϵ)x̂(U≥i+3),

where (a) observes that any point p with nonzero label is fractionally matched by at least w(p)
edges (invariant (I)).

We also have f(U≤i) ≤ |F≤i+1| since all sets hit by U≤i have label at most i+ 1 (invariant (II)).
We then have λ|F≤i+1| ≤ x̂(U≤i+2) because each set in F≤i+1 is inactive and fractionally matched
λ times to points in U≤i+2 (invariant (II)). Putting everything together, we have

w(U≥i+1) + (1 + ϵ)λf(U≤i) ≤ (1 + ϵ)(x̂(U≥i+3) + x̂(U≤i+2)) = (1 + ϵ)x̂(U) ≤ (1 + ϵ)λr.

Rearranging we have

w(U≥i+1) ≤ (1 + ϵ)λ(r − f(U≤i)).

Since U≥i+1 ≠ 0, this first implies that f(U≤i) < r. Dividing both sides by r − f(U≤i) gives
φ(U≤i) ≤ (1 + ϵ)λ, as desired.

Proof of lemma 6.3. We are now prepared to prove lemma 6.3. The high-level idea of the
algorithm is as follows. We initialize the push-relabel algorithm as described above and run the
push-relabel algorithm until all active vertices have label h. If x is a feasible matching, then this
certifies that the hitting set system has strength λ. If not, then by lemma C.2, we can identify
an index i ≤ h − 2 such that φ(U≤i) ≤ (1 + ϵ)λ. We remove all points in U>i, and then repeat,
continuing the push-relabel algorithm from the current configuration. The algorithm terminates
when it obtains a feasible matching x for the remaining hitting set system. (This includes the empty
matching when U = ∅.) See fig. 5 on the next page for pseudocode.

Let Uout be the set of points returned by the algorithm. The feasible matching x at termination
certifies that Uout has strength at least λ.

Suppose Uout ̸= U . Then the algorithm runs for k + 1 iterations for some k ∈ Z≥0. Let
(U0 = U) ⊇ U1 ⊇ U2 ⊇ · · · ⊇ (Uk = Uout) be the descending sequence of point sets that the set
system is restricted to in each iteration. For each i ∈ [k], we have

φ(Ui | Ui−1) = w(Ui−1) − w(Ui)
f(Ui−1) − f(Ui)

≤ (1 + ϵ)λ

by lemma C.2. Consequently

w(U) − w(Uout) =
k∑

i=1
w(Ui−1) − w(Ui) ≤ (1 + ϵ)λ

k∑
i=1

f(Ui−1) − f(Ui)

= (1 + ϵ)λ(f(U) − f(Uout)),

hence φ(Uout | U) ≤ (1 + ϵ)λ.
It remains to address the running time. As mentioned above, the total time spent on push-relabel

operations, and on removing vertices, is O
(
|E|h2) = O

(
N log2(W )/ϵ2

)
. To identify the index i in
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1. Initialize the push-relabel algorithm.
2. Repeatedly:

A. Continue the push-relabel algorithm until all active vertices have label h.
B. If x is a feasible matching, then return the set of all remaining points.
C. Otherwise let i ∈ [h− 2] such that w(U≤i+2) ≤ w(U≤i) + ϵw(U). Remove all of U>i (and

all sets contained in U>i) from the flow network.

Figure 5: Computing a set with strength-ratio at most (1 + ϵ)λ and strength at least λ (from the proof of
lemma 6.3).

step (2.C) efficiently, it suffices to keep track of w(U≤i) as points are relabeled, and maintain a list
of the indices i where w(U≤i+2) − w(U≤i) ≤ ϵw(U). It is easy to do so with negligible overhead.

This completes the proof of lemma 6.3.
Remark C.1. The quadratic dependency on log(W )/ϵ in lemma 6.3 can be reduced by adapting
the scaling approach of [AO89]. For ease of exposition we presented what we believed to be the
simplest algorithm for the task. (Besides, for the overall sparsification algorithm, this speedup is
not compatible with the alternative speedup described in remark 6.1.)

D Extending to general weights

Elsewhere in this article we have described nearly linear time algorithms sparsifying quotients of
a function f for polynomially bounded weights. Here we give a nearly black-box reduction from
general weights to the polynomially-bounded setting.

For fixed f : N → R≥0, we assume that we can sparsify, for any disjoint S, T ⊆ N , the function
fT |S obtained by contracting T and restricting to S:

fT |S(A) = f(A ∪ T ) − f(T ) for A ⊆ S.

We point out that for each of our concrete classes (matroids, hypergraphs, and coverage), fT |S
gives another instance of that class. We assume that, given fT |S , where the weights of S lie in a
polynomially bounded range, there is a randomized algorithm that produces, with high probability,
a randomized set of weights w̃ : S → R≥0 that:

(a) Preserves the weight of every quotient of fT |S up to a (1 + ϵ)-factor.
(b) Has Nonzeroes(f(S |T )) nonzeroes for some function Nonzeroes(x).
(c) Takes Time(S) randomized time for some set function Time(X).

We assume that Nonzeroes is superadditive: Nonzeroes(x) + Nonzeroes(y) ≤
Nonzeroes(x+ y) for x, y > 0. We also assume that Time is superadditive over disjoint sets:
Time(A) + Time(B) ≤ Time(A ∪B) for disjoint A,B ⊆ N . Below we define Nonzeroes and
Time for the 4 main examples in this article.

• For normalized monotone submodular f , we have Nonzeroes(x) = O
(
x log(nr)/ϵ2

)
and

Time(S) = O
(
|S|O(1)

)
.

• For matroids, we have Nonzeroes(x) = O
(
x log(n)/ϵ2

)
and Time(S) = Õ(|S|Qrank).

• For hypergraphs with n vertices, we have Nonzeroes(x) = O
(
x log(n)/ϵ2

)
and Time(S) =

Õ(pS), where pS =
∑
e∈S

|e|.
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• For coverage with n sets, we have Nonzeroes(x) = O
(
x log(n)/ϵ2

)
and Time(S) = Õ(NS)

where NS =
∑
e∈S

f(e).

Given this setup, we describe a randomized algorithm that produces randomized weights
w̃ : N → R≥0 that with high probability, (a) preserve the weight of every quotient of f up to a
(1 + ϵ)-factor, (b) has Nonzeroes(r) nonzeroes, and (c) takes Time(N ) randomized time (aside
from some simple preprocessing that is unlikely to be a bottleneck for most applications).

The high-level idea is very simple. We partition the elements by weight, so that the weights
within each group of elements lie within a polynomial factor, while the ranges of the weights of
the groups are disjoint and a polynomial factor apart from each other. We run the polynomially
bounded sparsification routine on each group separately and combine the randomized weights for
each group.
The algorithm. For ease of notation, we fix ϵ > 0 and describe an algorithm that preserves all
quotients up to a (1 + cϵ)-factor for a constant c > 0; a proper (1 + ϵ)-approximation follows from
decreasing ϵ by a constant factor.

For each element e, let We
def= [w(e), w(e)n/ϵ] be an interval representing an (n/ϵ)-factor window

starting at w(e). Let W def= ⋃
eWe be the union of these windows, and let W1, . . . ,Wh be the maximal

closed intervals of W listed in increasing order. That is, W is the disjoint union of W1, . . . ,Wh.
Each Wi is contained in a O

(
n2/ϵ

)
-factor range.

For each i ∈ [h], let Ni
def= {e : w(e) ∈ Wi} be the set of elements whose weight falls in the

window Wi. For i < j,

max
e∈Ni

w(e) ≤ ϵ

n
min
e∈Nj

w(e),

so the weights of elements in different windows are an (n/ϵ)-factor apart. We denote N≤i
def= ⋃

j≤i Nj

for i ∈ Z≥0. Let ni
def= |Ni| for i ∈ [h].

For i ∈ [h], let fi
def= fN≥i+1|Ni

be the function obtained by contracting N≥i+1 and restricting to
Ni. fi has a ground set of ni elements and rank f(Ni | N≥i+1).

For each fi, we run the sparsification algorithm on fi, producing a randomized set of weights
w̃i : Ni → R≥0. Let ŵ combine the w̃i’s into a set of weights over N ; i.e.,

ŵ(e) def= w̃i(e) for e ∈ Ni.

We return ŵ.
Correctness. For each i, with high probability, w̃i has Nonzeroes(Ni) nonzeroes, and preserves
all quotients of fi up to a (1 + ϵ)-factor. By the union bound (and noting that h ≤ n), this holds
for all i ∈ [h] with high probability. Henceforth we assume that this is the case.

We first bound the size of the support of ŵ. We have
h∑

i=1
Nonzeroes(f(Ni | N≥i+1))

(a)
≤ Nonzeroes

(
h∑

i=1
f(Ni | N≥i+1)

)
(b)
≤ Nonzeroes(r)

by (a) superadditivity and (b) telescoping series.
Next we verify that ŵ approximates the weight of all quotients. Consider any quotient Q of f .

We want to show that ŵ(Q) approximates w(Q). Let e be the maximum weight element in Q, and
suppose e ∈ Ni. Observe that

w(N≤i−1) ≤
(
ϵw(e)
n

)
· n = ϵw(e) ≤ ϵw(Q).
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In particular,

w(Q ∩ Ni) ≥ w(Q) − w(N≤i) ≥ (1 − ϵ)w(Q),

so Q ∩ Ni represents almost all of the weight of Q.
By lemma 2.1, Q∩ N≥i = Q∩ Ni is a quotient in (the function restricted to) N≥i. Since Q∩ N≥i

is disjoint from N≥i+1, Q ∩ Ni is a quotient of fi (i.e., upon contracting N≥i). Since w̃i is an
(1 + ϵ)-approximation of w for the quotients of fi, we have

(1 − ϵ)w(Q ∩ Ni) ≤ (ŵ(Q ∩ Ni) = w̃i(Q ∩ Ni)) ≤ (1 + ϵ)w(Q ∩ Ni).

Now we have

ŵ(Q) ≥ ŵ(Q ∩ Ni) = w̃i(Q ∩ Ni) ≥ (1 − ϵ)w(Q ∩ Ni) ≥ (1 − ϵ)2w(Q).

We also have

ŵ(Q) ≤ w̃i(Q ∩ Ni) +
∑
j<i

w̃j(Nj)
(c)
≤ (1 + ϵ)w(Q ∩ Ni) + (1 + ϵ)

∑
j<i

w(Nj)

≤ (1 + ϵ)w(Q) + ϵ(1 + ϵ)w(Q) = (1 + ϵ)2w(Q),

where (c) observes that Nj is a quotient in fj , hence w̃j(Nj) ≤ (1 + ϵ)wj(Nj), for all j. Thus
(1 − ϵ)2w(Q) ≤ ŵ(Q) ≤ (1 + ϵ)2ŵ(Q), as desired.

Running times. For each fi, the sparsification routine takes Time(Ni) randomized time, where we
point out that a query to fi translates to two queries of f in the oracle model. Over all i, this adds
up to ∑i Time(Ni) ≤ Time(N ) randomized time by superadditivity, as desired.

For actual instances of f , we must also address the running time of setting up each fi. We
address the three applications discussed in this article.

For matroids, we have Time(S) = Õ(|S|Qrank), hence Time(N ) = Õ(nQrank). Each fi is the
rank function of the matroid Mi obtained by contracting N≥i+1 and restricting to Ni. It is easy to
assemble all the matroids in nearly linear time since their ground sets are disjoint. So the overall
running time is again Õ(nQrank).

For hypergraphs, let p = ∑
e∈N |e|, and for each i, let pi = ∑

e∈Ni
|e|. Each fi corresponds

to the hypergraph Hi obtained by restricting to the edges in N≥i and then contracting all edges
in Ni. We have Time(Ni) = Õ(pi) for all i, and Time(N ) = Õ(p). We now bound the time to
construct all the hypergraphs. The first hypergraph H1 is obtained from the input hypergraph H by
contracting all the edges in N≥2, in linear time. Given Hi, one obtains Hi+1 in O(pi + pi+1) time
by removing all the edges in Ni and uncontracting all the edges in Ni+1. Altogether we spend O(p)
time constructing the Hi’s, which is negligible.

Lastly we discuss coverage. Recall that N = ∑
e∈N f(e) denotes the total size of the set system.

For each i, let Ni = ∑
e∈Ni

f(e) denote the total size of the set system restricted to the points
in Ni. We have Time(Ni) = Õ(Ni) for all i, and Time(N ) = Õ(N). Each fi corresponds to the
system obtained by first restricting to the points in N≥i and then contracting N≥i+1. This leaves
only the sets that are hit by Ni and not hit by N≥i+1. The first set system is obtained from the
input set system by removing all points in N≥i+1 and all sets hit by N≥i+1. The (i + 1)th set
system is obtained from the ith set system by removing the points Ni, reintroducing Ni+1, and
updating the relevant sets accordingly. It is easy to do this in O(Ni +Ni+1) time. Altogether we
spend O(N) +∑iO(Ni +Ni+1) = O(N) time constructing the set systems (in succession), which is
negligible.
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