





































































































Quotient Sparsification
for Sub modular Functions








































































































Graph 2 cuts
ndirected edgeweights
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ndirected edgeweights
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ndirected edgeweights
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Graph 2 cuts

ndirected edgeweights

G V E
n IVI mi

W e O for EEE

2 5 e u BEE ues v45








































































































Graph 2 cuts

ndirected edgeweights

G V E
n IVI mi

w e O for EEE

2 5 e u u EE ues v45

cut values are important determine max flows connectivity
balanced separators expansion etc








































































































Graph cut sparsification

Input É V E
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Graph cut sparsification

Input É V E Goal subgraph E LV É
N IVI MI El

we O for eeÉ
w e o for EEE

2 2

z z 22 2
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32 2 2
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Graph cut sparsification

Input É V E Goal subgraph E LV É
n IVI MI El

we O for eeÉ
w e o for EEE

2 2

z z 22 2
2

32 2 2

22 2

I

sit Ca El small
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Graph cut sparsification

Input É V E Goal subgraph E LV É
N IVI MI El

we O for eeÉ
w e o for EEE

2

2 z 22 2 2 2 a

2 2

I

sit Ca El small
6 all cats have similar

weight as in G








































































































Graph cut sparsification

Input É V E Goal subgraph E LV É
n IVI MI El

we O for eeÉ
w e o for EEE

2

2 z 22 2 2 2 a

2 2

I

sit Ca El small
3enczir Karger 2002 6 all cats have similar

weight as in GIE Ocn login ez
lte APX I e wee E W e ICHE Ice
for all cuts ee 20 ee215 eeas








































































































Graph cut sparsification

Input É V E Goal subgraph E LV É
n IVI MI El

we O for eeÉwie o for EEE
2

2 z 22 2 3 2 2 a

2 2

I

sit a III small
3enczir Karger 2002 6 all cats have similar

weight as in GIE Ocn login ez
lte APX I e wee E W e ICHE Ieeasice
for all cuts ee 20 ee2 s

Also spectral 504,55117 IÉ O n E 1355127 FHHPI1 m








































































































edgeshavemany endpoints

Hypergraph 2 cuts

G UE
edgeweights

N IVI me El
W e O for CEE

p total size eaglet








































































































edgeshavemany endpoints

Hypergraph 2 cuts

edgeweights

G V E
n IVI m IE

W e O for EEE

p total size É let

215 EEE Olsen see

w 215 Ence
eeas








































































































edgeshavemany endpoints

Hypergraph 2 cuts

edgeweights

G V E
n IVI m IE

W e O for EEE

p total size Eelet

215 EEE Olsen see

w 215 Ence
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edgeshavemany endpoints

Hypergraph 2 cuts

edgeweights

G V E
n IVI m IE

W e O for EEE

p total size Eelet

215 EEE Olsen see

w 215 Ence
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edgeshavemany endpoints

Hypergraph 2 cuts

edgeweights

G V E
n IVI m IE

W e O for EEE

p total size EElet

215 EEE Olsen see

w 215 Ence
eeas








































































































edgeshavemany endpoints

Hypergraph 2 cuts

edgeweights

G V E
n IVI m IE

W e O for EEE

p total size É let

215 EEE Olsen see

w 215 Ence
eeas








































































































edgeshavemany endpoints

Hypergraph 2 cuts

edgeweights

G V E
n IVI m IE

W e O for EEE

p total size É let

215 EEE Olsen see

w 215 Ence
eeas








































































































total size eagle
Hypergraph 2 cat sparsification Kk's418,5419Bstigcknao

KKTY21 122,51522 JLLS2

Input Hypergraph G VE
N IVI MI El

wie o for EEE








































































































total size eagle
Hypergraph 2 cat sparsification Kk's418,5419Bstigcknao

KKTY21 122,51522 JLLS2

Input Hypergraph G VE Goal subgraph E LV É
n IVI MI El

wie o for EEE we O for eeÉ
10 10 10

1
10

10
10

10 10 10

1

Sil a

6








































































































total size le
Hypergraph 2 cat sparsification Kk's418,5419Bstigcknao

KKTY21 122,51522 JLLS2

Input Hypergraph G VE Goal subgraph E LV É
n IVI MI El

wie o for EEE we O for eeÉ
10 10 10

1
10

10
10

10 10 10

1

sit a III small
6








































































































Hypergraph 2 cat sparsification Kk's418,5419BST19CKN20
KKTY21122,52522 JLLS2

o total size Eelel

Input Hypergraph G VE Goal subgraph E LV É
n IVI MI El

wie o for EEE we O for eeÉ
10 10 10

1
10

10
10

10 10 10

1

sit a III small
6 all 2 cats have similar

weight as in G








































































































total size eagle
Hypergraph 2 cat sparsification Kk's418,5419Bstigcknao

KKTY21 122,51522 JLLS2

Input Hypergraph G V E
min male

6091 subgraph E V E

w e o for EEE we O for eeÉ
10 10 10

1
10

10
10

10 10 10

1

sit a III small
Chen Khanna Magda 2002 6 all 2 cats have similar

weight as in GIE Ocn login ez
lte APX I e wee E W e ICHE Ieeasice
for all cuts ee 20 ee2 s








































































































total size eagle
Hypergraph 2 cat sparsification Kk's418,5419Bstigcknao

KKTY21 122,51522 JLLS2

Input Hypergraph G V E
min male

6091 subgraph E V E

w e o for EEE we O for eeÉ
10 10 10

1
10

10
10

10 10 10

1

sit a III small
Chen Khanna Magda 2020 6 all 2 cats have similar

weight as in GIE Ocn login ez
lte APX I e wee E W e ICHE Ieeasice
for all cuts ee 20 ee2 s

Also spectral extensions sums of symm submodular fun m

byothers








































































































Matroids and quotients

MINER
feasible

groundsÉ independent sets

Independent sets I satisfy

1 OEI
2 If SET and TEI then SEI

3 If S TEI and Isk ITI then

Ste EI for some eETIS








































































































Matroids and quotients

MINER
feasible

groundsÉ independent sets

Independent sets I satisfy

1 OEI
2 If SET and TEI then SEI

3 If S TEI and Isk ITI then

Ste EI for some e ETS

2,3 7 maximal indep sets are maximuminéepsett








































































































Matroids and quotients Graphic Matroid
i.e forestsMINER

fix G V E undirected

groundsÉ independent sets
N E

Independent sets I satisfy I FEE F is a forest
1 OEI
2 If SET and TEI then SEI

3 If S TEI and Isk ITI then

Ste EI for some e ETS








































































































Matroids and quotients Graphic Matroid
i.e forestsMINER

fix G V E undirected

groundsÉ independent sets
N E

Independent sets I satisfy I FEE F is a forest
1 OEI
2 If SET and TEI then SEI

3 If S TEI and Isk ITI then

Ste EI for some e ETS

1 O is a forest








































































































Matroids and quotients Graphic Matroid
i.e forestsMINER

feasible fix G V E undirected

groundsÉ independent sets N E
Independent sets I satisfy I FEE F is a forest
1 OEI
2 If SET and TEI then SEI

3 If S TEI and Isk ITI then

Ste EI for some e ETS

1 O is a forest

2 Subset of a forest
is a forest








































































































Matroids and quotients Graphic Matroid
i.e forestsMINER

feasible fix G V E undirected

groundsÉ independent sets N E
Independent sets I satisfy I FEE F is a forest
1 OEI
2 If SET and TEI then SEI

3 If S TEI and Isk ITI then

Ste EI for some e ETS

1 O is a forest 3 If F E are forests w IF Is El
some ee Elf connects diff2 Subset of a forest

is a forest conn comp of F








































































































MEITEIRM k independentsets

1 OEI
2 SET TEI SEI

rank s max III IES Iet 3 S TEI ISK IT
e ETS s.t Ste EI

rank of M I rank N maxima maximum

Graphic Matroid
i.e forests

fix G V E undirected

N E
I FEE F is a forest

1 O is a forest
2 Subset of a forest
is a forest

3 If F E are forest
W IF IS IF

some eeEIF connects
diff conn comp of F








































































































Rank m i
1 OEI
2 SET TEI SEI

rank s max III IES Iet 3 S TEI ISK IT
e ETS s.t Ste EI

rank of M I rank N maxima maximum

Graphic Matroid
i.e forests

e.g graphic matroid fix G VE undirected

N E
rank 5 max IF FES F forest I FEE Fisa forest

N conn comp Of s 1.0 is a forest
2 Subset of a forest
is a forest

I
3 If F E are forestTimIET yer 3Mt

W IF Isf
some eeEIF connects
diff conn comp of F

rank of graphic matroid
n I if graph is connected








































































































MEITEIRM k independentsets

1 OEI

rank 5 max III IES IET 2 SET TEI SEI

3 S TEI ISK IT

rank of M I rank N eetisst Stec
maxima maximum

Graphic Matroid

Properties of f rank lie forests
fix G V E undirected

ME
I FEE F is a forest

1 O is a forest
2 Subset of a forest
is a forest

3 If F E are forest
W IF IS IF

some eeEIF connects
diff conn comp of F
rank s In CCofS

FEE








































































































MEITEIRM k independentsets

1 OEI

rank 5 max III IES IET 2 SET TEI SEI

3 S TEI ISK IT

rank of M I rank N eetisst Stec
maxima maximum

Graphic Matroid

Properties of f rank lie forests
fix G V E undirected

monotone FCS Ef T for SET ME
I FEE F is a forest

1 O is a forest
2 Subset of a forest
is a forest

3 If F E are forest
w IF IS IF

some eeEIF connects
diff conn comp of F
rank s In CCofS

EEE








































































































MEEEEERank
1 OEI

rank 5 max III IES IET 2 SET TeI SEI

3 S TEI ISK IT

rank of M I rank N eetisst Stec
maxima maximum

Graphic Matroid

Properties of f rank lie forests
fix G V E undirected

monotone FCS Ef T for SET ME
I FEE Fisa Forest

sub modular if SET and een 1 O is a forest
2 Subset of a forest

felt I flels decreasing is a forest
marginal 3 If F E are forestFTterFT Felts returns W IF IS IF

some eeEIF connects
diff conn comp of F
rank s In CCofS

FEE








































































































MEEEEERank
1 OEI

rank 5 max III IES IET 2 SET TEI SEI

3 S TEI ISK IT

rank of M I rank N eetisst Stec
maxima maximum

Graphic Matroid

Properties of f rank lie forests
fix G V E undirected

monotone FCS Ef T for SET ME
I FEE F is a forest

sub modular if SET and een 1 O is a forest
2 Subset of a forest

felt I flels decreasing is a forest
marginal 3 If F E are forestFTterFT Estela returns W IF IS IF

some et EIF connectsnormalized for TEN and een diff conn comp of F
rank s In CCofS

Flett 0 or felt I
FEE

actually I for rank function








































































































M EYES p an
independentsets

1 OEI
2 SET TEI SE

span s EEN 5 Ste FCS 3 s.TEI.sk TI
includings e ETS s.t Ste EI

maxima maximum

rank s max III IES Ieg is closed if St span s

properties of frank
rankofM ranker

monotone FCS Ef T for SE
submodular if SETand ee

EE.EE Eg
decrea

normalized for TENandeen
fCelt 0 or felt 1

GraphicMatroid
i.e forests

fix G VE undirecte

ME
I FEE Fisa fore
rank s In CCof

E FEE








































































































M EYES p an
independentsets

1 OEI
2 SET TEI SE

span s EEN 5 Ste FCS 3 STEI Isk IT
includings e ETS s.t Ste EI

maxima maximum
S is closed if s span s rank s max III IES IE

rankofM rank N
Properties of Frank
monotone FCS Ef T for SE
submodular if SETand ee

e g graphic matroid EE.EEEE
decrea

normalized for TENandeen
fCelt 0 or felt 21

GraphicMatroid
i.e forests

span s all edges connected by s
fix G VE undirecte

ME
I FEE Fisa fore

FEE








































































































MEEEEEQuotients 1 OEI
2 SET TEI SE

Q is a quotient if Q N1Q is closed 3 S TEI ISK IT
e ETS s.t Ste EI
maxima maximum

rank 5 max III IES I E
rankofM rank N
Properties of Frank
monotone FCS Ef T for SE
submodular if SETand ee

i e if Q V1 span

g

EE.EE Eg
decrea

normalized for TENandeen
fCelt 0 or felt I

spans een 5 Ste SC

GraphicMatroid
i.e forests

fix G VE undirecte

ME
I FEE F is afores
rank s In CCof

FEE
spans edgesconnectedbe








































































































MEEEEEQuotients 1 OEI
2 SET TEI SE

Q is a quotient if Q N1Q is closed 3 S TEI ISK IT
e ETS s.t Ste EI
maxima maximum

i e if Q V1 span s for some SEV rank 5 max III IES IE
rankofM rank N
Properties of Frank
monotone FCS Ef T for SE
submodular if SETand ee

EE4EEE
decrea

e.g for graphic matroid

span 5 all edges connected by s normalized sorter andeen
fCelt 0 or felt I

S is closed if s span
GraphicMatroid
i.e forests

fix G VE undirecte

ME
I FEE Fisafores
rank s In CCof

FEEI É I span S
spans edgesconnectedb








































































































MEEEEEQuotients 1 OEI
2 SET TEI SE

Q is a quotient if Q N1Q is closed 3 S TEI ISK IT
e ETS s.t Ste EI
maxima maximum

i e if Q V1 span s for some SEV rank 5 max III IES IE
rankofM rank N
Properties of Frank
monotone FCS Ef T for SE
submodular if SETand ee

span 5 all edges connected by s normalized sorterandeer

e g for graphic matroid

fCelt 0 or felt I

spans een 5 Ste se

GraphicMatroid
i.e forests

fix G VE undirecte

ME
I FEE Fisafores
rank s In CCof

E FEEI É I span S
spancs edgesconnectedb

edges cut by conn comp of S








































































































MEEEEEMatroid quotient sparsification 1 OEI
2 SET TEI SE

Input M N I 3 S TEI ISK IT

w e o for een

6091 Tle O for ee E
n INI Frank N e ETS s.t Ste EI

a

maxima maximum
32 I 22

rank 5 max III IES Ie
rankofM rank N
Properties of Frank
monotone FCS Ef T for SE
submodular if SETand ee

EE EEEE
decrea

S.t a support in small
normalized for TENandeen

6 all quotients have scents o or foetal

similar weight as M W spans eer Sisters
S is closed if s sparkTheorem
Q quotients TOclose
i e Q VI span s
GraphicMatroid
NIE Ie forests

rank s In CCofS
span s edgesconnectedby
Q edgescutby
conn comp ofS








































































































MEEEEEMatroid quotient sparsification 1 OEI
2 SET TEI SE

Input M N I 3 S TEI ISK IT

wie o for een

6091 Tle O for ee E
n INI Frank N e ETS s.t Ste EI

maxima maximum
32 I 222

rank 5 max III IES IE
rankofM rank N
Properties of Frank
monotone FCS Ef T for SE
submodular if SETand ee

St a support in small III
normalized for TENandeen

6 all quotients have scents o or foetal

similar weight as M W spans eer Sisters
S is closed if s sparkTheorem
Q quotients TOclose
i e Q VI span s
GraphicMatroid

IsupportW 0 r log n E
ME forests

rank s In CCofS
span s edgesconnectedby
Q edgescutby
conn comp ofS








































































































MEEEEEMatroid quotient sparsification 1 OEI
2 SET TEI SE

Input M N I 3 S TEI ISK IT

wie o for een

6091 Tle O for ee E
n INI Frank N e ETS s.t Ste EI

maxima maximum
32 I 222

rank s max III IES Ie
rankofM rank N
Properties of Frank
monotone FCS Ef T for SE
submodular if SETand ee

St a support in small III
normalized for TENandeen

6 all quotients have scents o or foetal

similar weight as M W spans eer Sisters
S is closed if s sparkTheorem
quotient TOclose

i e Q VI span sIsupport w Ocr login E GraphicMatroid
LEE Is forestsIte APX

l g w G I q Q Hq w Q ranks n C CCGS
all quotients 0 span s edgesconnectedby

Q edgescutby
conn comp ofS








































































































MEEEEEMatroid quotient sparsification 1 OEI
2 SET TEI SE

Input M N I 3 S TEI ISK IT

wie o for een

6091 Tle O for ee E
n INI Frank N e ETS s.t Ste EI

maxima maximum
32 I 222

rank 5 max III IES Ie
rankofM rank N

InesisÉ torse
submodular if SETand ee

normalized for TENandeen
6 all quotients have scents o or foetal

similar weight as M W spans eer Sisters

me s es

S is closed if s sparkTheorem
Q quotients TOclose
i e Q VI span sIsupport w Ocr login E GraphicMatroid

Ite APX
l g w Q I we Q I Hq w Q ranks n C CCGS

all quotients 0 span s edgesconnectedby
Q edgescutby
conn comp ofS

n rand time and rank oracle queries








































































































MEEEEEMatroid quotient sparsification 1 OEI
2 SET TEI SE

Input M N I w e o for een 3 5 TEI Isk IT
NINI Franklin EETS s.t Stef

Theorem maxima maximum

IsupportW r log n E ranks max III es.IE
rankofM's ranker
Properties of FrankITE APX

g g w G I we Q I Hq w Q monotone FcsEST for se

all quotients submodular if set and ee

EEE.IEEE
aurea

EE

Graphic Matroid normalized for terandeer
flett O or felt z1

ME I forests Oln login E edges
spancs leer sisters
S is closed if 5 spark

quotients TOclose

rank 5 In CC of S i.e Q Vispancs

pan 5

edges connected by s

Q edges cut by
conn comp of S








































































































MEEEEEMatroid quotient sparsification 1 OEI
2 SET TEI SE

Input M N I w e o for een 3 5 TEI Isk IT
NINI Franklin EETS s.t Stef

Theorem maxima maximum

IsupportW 0 r log n E ranks max III es.IE
rankofM ranker
Properties of FrankITE APX

g g w G I we a I Hq w Q monotone FcsEST for se

all quotients submodular if SETand ee

EEE.IEEE
aurea

EE

Graphic Matroid normalized for terandeer
flett 0 or felt z1

ME I forests Oln log n E edges
spancs leer sisters
S is closed if 5 spark

quotients TOclose

rank 5 In CC of S i.e Q Vispancs

HE APX all cuts
pan 5

edges connected by s

Q edges cut by
conn comp of S








































































































Sub modular quotients

Let 5 24 Rao be
monotone 5 s If T for se y

leg rank function

decreasingmarginal returns

sub modular if SET and een Flett I feels
FCTtelF flstelfest

normalized for TEN een f elt 0 or felt I

spang s ÉÉ Cels o

S closed if s spang s

Q quotient if QINIQ closed

i e Q NI spang
S for some S

rank of f f N








































































































Let f 2MRaobe
Hypergraphic polymatroid function monotone see Fisker

fix hypergraph G V E submodular if set een
Flett I flels decreasing

Itter Fests FEI
normalized for TEN een
fCelt 0 or felt I

spangs ÉÉ Cels o

S closed if s spangs
Qquotient if QINIQ close
i e Q NI span s for some

components of g

rank of f fur

FCS n
connected

allendpoints
span s hyperedges connected by s

Quotient Q E span s

edges cut by conn comp of 5

rank of f n t if 6 connected








































































































f g n
connected Hypergraphicpolymatroid function

components of s

edges cut byQuotient Q E span s conn comp of s

quotients Is cuts for varying K

k cuts include 2 cuts

unlike graphs
K cut half of

sum of 2 cuts over conn comp








































































































Let f 2 113
0 be

monotone SEF FCS Efc
submodular if SET een
Flett I flels decreasing

monotone Goal W ND Ryo sitter sets Finns

Input f 241130111m normalized for TEN EEN

submodular quotient

sparsification Flett O or felt 1

weights w N Ryo span s éÉi cels o

S closed if s spangs
10 10 10 Qquotient if QIN Qclos10 no 101

10 10 i.e Q NIspanS for some

St a support w small

Theorem 6 all quotients have similar
weight as w w








































































































iii t.ieEEsissestSubmodularquotient sparsification submodular if SET een

E.EE EEInput f 211 1 62 Goal w̅ Rso normalized sorter eer

weights w N Rso as a

S closed if S spangs

to

I
10 to

Qquotient if N1Q clos
i e Q NIspan s for some
rank of f f N

sit a support w̅ small

Theorem 6 all quotients have similar
weight as w wet r f N

Isupport w̅ Or log rn E

Ite APX
1 e w Q w̅ Q HE W Qall quotients

w high prob rand poly time w oracle access to








































































































Hypergraph k cat sparsification
o total size Eelel

Input Hypergraph G V E
n in male

6091 subgraph E V E

w e o for EEE we O for eeÉ
10 10

10 101
10 10

1

sit Ca El small
Theorem 6 all k cuts have similar

weight as in GIÉl Ocn log n ez

lte APX I e wee E W e ICHE Ice
for all k cuts ee 20 n Sk ee215 n Sk ee215 sk

w high prob in randomized p time








































































































5 21 Azo IEEEp
X weights win IR

vector quotient spaces

Theorem as't

vector space X let r f N

subspace Y Isupport a I
Ocr login E

quotient space X Y Y
Ite APX all
quotients

Theorem Given n vectors XERd weights w X Rso
TEX I X IR

o

1411 Old In n E

for all quotient spaces Q

Cl E WCXnQ I WCINQ E HE wCXnQ








































































































5 21 Azo IEEEp
X weights win IR

vector quotient spaces

Theorem ist

vector space X let r f N

subspace Y Isupporta I
Ocr login E

quotient space X Y Y
Ite APX all
quotients

Theorem Given n vectors XERd weights w X Rso
TEX I X 7112 o

1411 Old In n E

for all quotient spaces Q

Cl E WCXnQ I WCINQ E HE wCXnQ

why
linear matroid N X I independent sets of vectors

quotients off quotient subspaces








































































































Weighted coverage s f 241 1
weights w N IR

n elements N i let refer
Theorem ist

m sets FEIN 10 support w

elem Ocr login E

weights
win R

o
s lte APX all

quotients

theorem

TEN INK Olmlogen E
for all Si SKEE
1 E WCSUmUSK IT SumUSK AT E HE WCSU USK








































































































Weighted coverage s f 241 1
weights w N IR

n elements N i let refer
Theorem ist

m sets FE 2N 10 Isupport w

elem Ocr login E

weights
win R

o
s lte APX all

quotients

theorem

TEN INK Olmlogen E
for all Si SKEE
1 E WCS um USK IT S umUSDOT E HE WCSU USK

why
hitting set fn define 25113 by

FX I SEF SMX 01

Quotients of f unions of F








































































































ii t.iesiEsissese
relation To submodular ifset een

Flett Ifeels decreasing

Input F2111301811 Goal W NIR o
ten sets

modularquotient d

normalized for Ter een

high level ideas

amain

Benazir Karger weights win Ryo si s EEtEIso
Sclosedit sspangs

ie Q Nispans forsome

how to do it fast

St a supportw small

additional constraint 6 all quotients havesimilarTheorem
weight as w wlet r f N

be concrete Isupportw Ocrlog n E
Ite APX I E w Q E ICQ ICHE WCQall quotientsno more submodular

w highprog rand poly time w oracle access to

Focus on graph cuts

graphic matroid








































































































Larger's random contraction alg

2 22 2 22 2 2

4 22 2 2 4
3 4 3

Returns fixed min cut w prob r Yn
OCR min cuts

more generally 2 APX cuts I nod








































































































Larger's random contraction alg

2
2
2 a

2
2

22 2

4 22 2 2 4
3 4 3

Returns fixed min cut w prob R n

OCR min cuts

more generally 2 APX cuts I n
4

i
we can union bound over

APX min cuts

weaker uniform sparsification
that lte APX the min cut








































































































Benazir Karger 2002
nonuniformly
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Chapter 3 
Global Min-cuts in RNC, and Other Ramifications 

of a Simple Min-Cut Algorithm* 

David R. Kargert 

Abstract This paper presents a new algorithm for 
finding global min-cuts in weighted, undirected graphs. 
One of the strengths of the algorithm is its extreme 
simplicity. This randomized algorithm can be imple- 
mented as a strongly polynomial sequential algorithm 
with running time 6(mn2), even if space is restricted 
to O(n), or can be parallelized as an Zn/C algorithm 
which runs in time O(log2 n) on a CRCW PRAM with 
mn2 log n processors. In addition to yielding the best 
known processor bounds on unweighted graphs, this al- 
gorithm provides the first proof that the min-cut prob- 
lem for weighted undirected graphs is in 7ZAfC. The 
algorithm does more than find a single mm-cut; it finds 
all of them. The algorithm also yields numerous results 
on network reliability, enumeration of cuts, multi-way 
cuts, and approximate mm-cuts. 

1 Introduction 
This paper studies the min-cut problem. Given a 
graph with n vertices and m (possibly weighted) edges, 
we wish to partition the vertices into two non-empty 
sets S and T so as to minimize the number of edges 
crossing from S to T (if the graph is weighted, we 
wish to minimize the total weight of crossing edges). 
Throughout this paper, the graph is assumed to be 
connected, since otherwise the problem is trivial. The 
problem actually comes in two flavors: in the s-t min- 
cut problem, we require that the two specific vertices s 
and t be on opposite sides of the cut; in what will be 
called the min-cut problem, or for emphasis the global 
m&-cut problem, there is no such restriction. 

1.1 Previous Work. The oldest known way to 
compute min-cuts is to use their well known duality with 
max-flows [FF56, FF62]. Computation of an s-t max- 
flow allows the immediate determination of an s-t min- 

*Supported by a National Science Foundation Graduate 
Fellowship 

tDepartment of Computer Science, Stanford University. 
karge&cs.stanford.edu 

cut. The best presently known sequential time bound 
for max-flow is O(mnlog(n2/m)), found by Goldberg 
and Tarjan [GT88]. Global min-cuts can be computed 
by minimizing over s-t max-flows; Hao and Orlin [HO921 
show how the max-flow computations can be pipelined 
so that together they take no more time than a single 
max-flow computation; thus the global min-cut problem 
can be solved in the same d(mn) running time.’ 

Recently, progress has been made in special cases 
of the min-cut problem. On unweighted graphs, the 
mm-cut problem is often known as the edge-connectivity 
problem. Gabow [Gab911 shows how to find the edge- 
connectivity c of a graph in time O(cnlog(n2/m)). On 
weighted, undirected graphs, the algorithm of Nag- 
amochi and Ibaraki [NI921 computes the min-cut in time 
O(mn+n2 log n). These algorithms make no use of max- 
flow computations. 

Work has also been done on parallel solutions to 
the min-cut problem. Goldschlager, Shaw, and Sta- 
ples [GSSSZ] h s owed that the s-t mm-cut problem on 
weighted directed graphs is P-complete. This is also 
true for the global min-cut problem (see section 4.2). 
In the special case of unweighted directed or undi- 
rected graphs, the matching algorithm of Karp, Upfal 
and Wigderson [KUWSS], together with a reduction de- 
scribed by Mulmeley, Vaairani and Vazirani [MVV87], 
can be used to find s-t max-flows and min-cuts in 
O(log2 n) time using mn3m5 processors. An alternative 
approach of Galil and Pan [GP88] uses n2M(n) pro- 
cessors, where M(n) is the processor cost for multiply- 
ing two matrices (presently about n2*37). In undirected 
graphs, fixing a vertex s and finding s-t m&cuts for 
all vertices t identifies a min-cut; this requires perform- 
ing n min-cut computations in parallel at a total cost 
of mn4S5 or n2M(n) processors. Either algorithm can 
be extended to weighted graphs by treating an edge of 
weight w as a collection of w unweighted edges. How- 

1 The notation O(f) denotes O(f polylog j) 
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RANDOMIZED APPROXIMATION SCHEMES FOR CUTS AND
FLOWS IN CAPACITATED GRAPHS∗

ANDRÁS A. BENCZÚR† AND DAVID R. KARGER‡

David Karger wishes to dedicate this work to the memory of Rajeev Motwani. His
compelling teaching and supportive advising inspired and enabled the line of

research [17, 24, 18, 21] that led to the results published here.

Abstract. We describe random sampling techniques for approximately solving problems that
involve cuts and flows in graphs. We give a near-linear-time randomized combinatorial construction
that transforms any graph on n vertices into an O(n logn)-edge graph on the same vertices whose
cuts have approximately the same value as the original graph’s. In this new graph, for example, we
can run the Õ(m3/2)-time maximum flow algorithm of Goldberg and Rao to find an s-t minimum
cut in Õ(n3/2) time. This corresponds to a (1 + ϵ)-times minimum s-t cut in the original graph. A
related approach leads to a randomized divide-and-conquer algorithm producing an approximately
maximum flow in Õ(m

√
n) time. Our algorithm can also be used to improve the running time of

sparsest cut approximation algorithms from Õ(mn) to Õ(n2) and to accelerate several other recent
cut and flow algorithms. Our algorithms are based on a general theorem analyzing the concentration
of random graphs’ cut values near their expectations. Our work draws only on elementary probability
and graph theory.

Key words. minimum cut, maximum flow random graph, random sampling, connectivity, cut
enumeration, network reliability

AMS subject classifications. 05C21, 05C40, 05C80, 68W25, 68W40, 68Q25, 05C85

DOI. 10.1137/070705970

1. Introduction. This paper gives results on random sampling methods for
reducing the number of edges in any undirected graph while approximately preserving
the values of its cuts and consequently its flows. It then demonstrates how these
techniques can be used in faster algorithms to approximate the values of minimum cuts
and maximum flows in such graphs. We give an Õ(m)-time1 compression algorithm
to reduce the number of edges in any n-vertex graph to O(n logn) with only a small
perturbation in cut values and then use that compression method to find approximate
minimum cuts in Õ(n2) time and approximate maximum flows in Õ(m

√
n) time.

1.1. Background. Previous work [19, 18, 22] has shown that random sampling
is an effective tool for problems involving cuts in graphs. A cut is a partition of a
graph’s vertices into two groups; its value is the number, or in weighted graphs the
total weight, of edges with one endpoint on each side of the cut. Many problems
depend only on cut values. The maximum flow that can be routed from s to t is the
minimum value of any cut separating s and t [10]. A minimum bisection is the smallest
cut that splits the graph into two equal-sized pieces. The connectivity or minimum
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1The notation Õ(f) denotes O(f polylog n), where n is the input problem size.
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Simple push-relabel algorithms
for matroids and submodular flows

András Frank and Zoltán Miklós?

Abstract

We derive simple push-relabel algorithms for the matroid partitioning, ma-
troid membership, and submodular flow feasibility problems. It turns out that,
in order to have a strongly polynomial algorithm, the lexicographic rule used in
all previous algorithms for the two latter problems can be avoided. Its proper
role is that it helps speeding up the algorithm in the last problem.

1 Introduction

Push-relabel algorithms (see, for example, the first one of Goldberg and Tarjan, [16]),
unlike augmenting path type algorithms, use only small, local steps. In order to
make progess, in selecting the current element where the next local step is to be
performed, they use a control parameter ⇥ : S ! {0, 1, 2, . . .} called a level (or
distance) function. Here S can be the node-set of a directed graph or the ground-set
of a matroid. In the present work the range of the level functions is {0, 1, 2, . . . , n}
where n = |S| while the original algorithm of Goldberg and Tarjan for maximum flows
must have allowed {0, 1, 2, . . . , 2n� 1} for the range of ⇥.
The goal of the present paper is to develop simple push-relabel algorithms in sub-

modular optimization. We exhibit versions for matroid partition, for membership in
a matroid polytope, and for submodular flow feasibility. All the previous algorithms
relied on a selection rule based on a consistent ordering of the elements. This rule can
be considered as a counterpart of the lexicographic rule of Schönsleben [19] applied
to augmenting path type algorithms. The new push-relabel algorithms do not use the
consistency rule and the proof of strong polynomiality becomes much simpler. The
true role of the consistency rule is that, though not needed for strong polynomiality,
it improves the complexity of the algorithm by one order of magnitude.
For a given level function ⇥, the sets Li = {v : ⇥(v) = i} (i = 0, . . . , n) are called

the level sets of ⇥. For an element s with ⇥(s) = j, we say that the level of s is j
or that s is in Lj. For a subset X ✓ S, let ⇥min(X) := min{⇥(v) : v 2 X}. One of
the local steps during the algorithm is lifting an element s of S with ⇥(s)  n � 1
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